Ting Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4715326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron-Facilitated Organic Radical Formation from Secondary Organic Aerosols in Surrogate Lung Fluid. Environmental Science & Technology, 2022, 56, 7234-7243.	4.6	20
2	Effects of Acidity on Reactive Oxygen Species Formation from Secondary Organic Aerosols. ACS Environmental Au, 2022, 2, 336-345.	3.3	12
3	Environmentally Persistent Free Radicals, Reactive Oxygen Species Generation, and Oxidative Potential of Highway PM _{2.5} . ACS Earth and Space Chemistry, 2021, 5, 1865-1875.	1.2	28
4	Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols. Environmental Science & Technology, 2021, 55, 260-270.	4.6	35
5	Secondary organic aerosols from aromatic hydrocarbons and their contribution to fine particulate matter in Atlanta, Georgia. Atmospheric Environment, 2020, 223, 117227.	1.9	34
6	Fine Particle Iron in Soils and Road Dust Is Modulated by Coal-Fired Power Plant Sulfur. Environmental Science & Technology, 2020, 54, 7088-7096.	4.6	17
7	Aqueous-Phase Decomposition of Isoprene Hydroxy Hydroperoxide and Hydroxyl Radical Formation by Fenton-like Reactions with Iron Ions. Journal of Physical Chemistry A, 2020, 124, 5230-5236.	1.1	21
8	Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. Environmental Science & Technology, 2019, 53, 12784-12792.	4.6	73
9	Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2019, 19, 3191-3206.	1.9	68
10	Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environmental Science & Technology, 2019, 53, 4003-4019.	4.6	321
11	Insights on Aerosol Oxidative Potential from Measurements of Particle Size Distributions. ACS Symposium Series, 2018, , 417-437.	0.5	2
12	Source impact modeling of spatiotemporal trends in PM2.5 oxidative potential across the eastern United States. Atmospheric Environment, 2018, 193, 158-167.	1.9	21
13	Source Impacts on and Cardiorespiratory Effects of Reactive Oxygen Species Generated by Water-Soluble PM2.5 Across the Eastern United States. Springer Proceedings in Complexity, 2018, , 503-508.	0.2	1
14	Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. Environmental Science & Technology, 2017, 51, 2611-2620.	4.6	323
15	Ambient Size Distributions and Lung Deposition of Aerosol Dithiothreitol-Measured Oxidative Potential: Contrast between Soluble and Insoluble Particles. Environmental Science & Technology, 2017, 51, 6802-6811.	4.6	91
16	A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP. Atmospheric Measurement Techniques, 2017, 10, 2821-2835.	1.2	67
17	Associations between Ambient Fine Particulate Oxidative Potential and Cardiorespiratory Emergency Department Visits. Environmental Health Perspectives, 2017, 125, 107008.	2.8	96
18	Oxidative potential of ambient water-soluble PM _{2.5} in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmospheric Chemistry and Physics, 2016, 16, 3865-3879.	1.9	223

Ting Fang

#	Article	IF	CITATIONS
19	Real-Time, Online Automated System for Measurement of Water-Soluble Reactive Phosphate Ions in Atmospheric Particles. Analytical Chemistry, 2016, 88, 7163-7170.	3.2	7
20	PM _{2.5} water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies. Atmospheric Chemistry and Physics, 2015, 15, 11667-11682.	1.9	91
21	A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). Atmospheric Measurement Techniques, 2015, 8, 471-482.	1.2	128
22	Organic Aerosols Associated with the Generation of Reactive Oxygen Species (ROS) by Water-Soluble PM _{2.5} . Environmental Science & Technology, 2015, 49, 4646-4656.	4.6	259
23	Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects. Environmental Science & amp; Technology, 2015, 49, 13605-13612.	4.6	258
24	Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity – Assessing the importance of quinones and atmospheric aging. Atmospheric Environment, 2015, 120, 351-359.	1.9	110
25	Reactive oxygen species associated with water-soluble PM _{2.5} in the southeastern United States: spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics, 2014, 14, 12915-12930.	1.9	224