
Ting Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4715326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. Environmental Science & Technology, 2017, 51, 2611-2620.	10.0	323
2	Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environmental Science & Technology, 2019, 53, 4003-4019.	10.0	321
3	Organic Aerosols Associated with the Generation of Reactive Oxygen Species (ROS) by Water-Soluble PM _{2.5} . Environmental Science & Technology, 2015, 49, 4646-4656.	10.0	259
4	Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects. Environmental Science & amp; Technology, 2015, 49, 13605-13612.	10.0	258
5	Reactive oxygen species associated with water-soluble PM _{2.5} in the southeastern United States: spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics, 2014, 14, 12915-12930.	4.9	224
6	Oxidative potential of ambient water-soluble PM _{2.5} in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmospheric Chemistry and Physics, 2016, 16, 3865-3879.	4.9	223
7	A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). Atmospheric Measurement Techniques, 2015, 8, 471-482.	3.1	128
8	Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity – Assessing the importance of quinones and atmospheric aging. Atmospheric Environment, 2015, 120, 351-359.	4.1	110
9	Associations between Ambient Fine Particulate Oxidative Potential and Cardiorespiratory Emergency Department Visits. Environmental Health Perspectives, 2017, 125, 107008.	6.0	96
10	PM _{2.5} water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies. Atmospheric Chemistry and Physics, 2015, 15, 11667-11682.	4.9	91
11	Ambient Size Distributions and Lung Deposition of Aerosol Dithiothreitol-Measured Oxidative Potential: Contrast between Soluble and Insoluble Particles. Environmental Science & Technology, 2017, 51, 6802-6811.	10.0	91
12	Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. Environmental Science & Technology, 2019, 53, 12784-12792.	10.0	73
13	Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2019, 19, 3191-3206.	4.9	68
14	A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP. Atmospheric Measurement Techniques, 2017, 10, 2821-2835.	3.1	67
15	Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols. Environmental Science & Technology, 2021, 55, 260-270.	10.0	35
16	Secondary organic aerosols from aromatic hydrocarbons and their contribution to fine particulate matter in Atlanta, Georgia. Atmospheric Environment, 2020, 223, 117227.	4.1	34
17	Environmentally Persistent Free Radicals, Reactive Oxygen Species Generation, and Oxidative Potential of Highway PM _{2.5} . ACS Earth and Space Chemistry, 2021, 5, 1865-1875.	2.7	28
18	Source impact modeling of spatiotemporal trends in PM2.5 oxidative potential across the eastern United States. Atmospheric Environment, 2018, 193, 158-167.	4.1	21

Ting Fang

#	Article	IF	CITATIONS
19	Aqueous-Phase Decomposition of Isoprene Hydroxy Hydroperoxide and Hydroxyl Radical Formation by Fenton-like Reactions with Iron Ions. Journal of Physical Chemistry A, 2020, 124, 5230-5236.	2.5	21
20	Iron-Facilitated Organic Radical Formation from Secondary Organic Aerosols in Surrogate Lung Fluid. Environmental Science & Technology, 2022, 56, 7234-7243.	10.0	20
21	Fine Particle Iron in Soils and Road Dust Is Modulated by Coal-Fired Power Plant Sulfur. Environmental Science & Technology, 2020, 54, 7088-7096.	10.0	17
22	Effects of Acidity on Reactive Oxygen Species Formation from Secondary Organic Aerosols. ACS Environmental Au, 2022, 2, 336-345.	7.0	12
23	Real-Time, Online Automated System for Measurement of Water-Soluble Reactive Phosphate Ions in Atmospheric Particles. Analytical Chemistry, 2016, 88, 7163-7170.	6.5	7
24	Insights on Aerosol Oxidative Potential from Measurements of Particle Size Distributions. ACS Symposium Series, 2018, , 417-437.	0.5	2
25	Source Impacts on and Cardiorespiratory Effects of Reactive Oxygen Species Generated by Water-Soluble PM2.5 Across the Eastern United States. Springer Proceedings in Complexity, 2018, , 503-508.	0.3	1