Artur Tyliszczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4714750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Evaporation Models and Droplet Size on Auto-ignition and Lift-off Height in a Spray Jet Flame. Combustion Science and Technology, 2022, 194, 175-194.	1.2	1
2	Experimental and numerical studies of turbulent flows over two-dimensional and three-dimensional rough surfaces under an adverse pressure gradient. Applied Mathematical Modelling, 2022, 106, 549-566.	2.2	2
3	High-order compact difference schemes on wide computational stencils with a spectral-like accuracy. Computers and Mathematics With Applications, 2022, 108, 123-140.	1.4	6
4	Numerical analysis of non-excited and excited jets issuing from non-circular nozzles. International Journal of Heat and Fluid Flow, 2022, 94, 108944.	1.1	5
5	Application of High-Order Compact Difference Schemes for Solving Partial Differential Equations with High-Order Derivatives. Applied Sciences (Switzerland), 2022, 12, 2203.	1.3	1
6	A numerical study of a lifted \$\$hbox {H}_2/hbox {N}_2\$\$ flame excited by an axial and flapping forcing. Scientific Reports, 2022, 12, 2753.	1.6	3
7	Dynamics of transitional jets emanating from a non-circular nozzle. Experimental Thermal and Fluid Science, 2022, , 110720.	1.5	0
8	Numerical Analysis of the Combustion Dynamics of Passively Controlled Jets Issuing from Polygonal Nozzles. Energies, 2021, 14, 554.	1.6	3
9	Numerical Analysis of a Flow over Spheres Embedded on a Flat Wall. Processes, 2021, 9, 277.	1.3	2
10	Numerical Study of Hydrogen Auto-Ignition Process in an Isotropic and Anisotropic Turbulent Field. Energies, 2021, 14, 1869.	1.6	4
11	A Numerical Study of the Global Instability in Counter-Current Homogeneous Density Incompressible Round Jets. Flow, Turbulence and Combustion, 2021, 107, 901-935.	1.4	3
12	Study of a Flame Kernel Evolution in a Turbulent Mixing Layer Using LES with a Laminar Chemistry Model. Flow, Turbulence and Combustion, 2020, 105, 807-835.	1.4	9
13	LES analysis of the actuation impact on the two-phase jet flame structure and stabilisation region. AIP Conference Proceedings, 2020, , .	0.3	0
14	A spark ignition scenario in a temporally evolving mixing layer. Combustion and Flame, 2019, 209, 353-356.	2.8	18
15	Controlling spatio-temporal evolution of natural and excited square jets via inlet conditions. International Journal of Heat and Fluid Flow, 2019, 80, 108488.	1.1	11
16	Modeling of heat and fluid flow in granular layers using high-order compact schemes and volume penalization method. Numerical Heat Transfer; Part A: Applications, 2019, 76, 737-759.	1.2	10
17	A new insight into understanding the Crow and Champagne preferred mode: a numerical study. Journal of Fluid Mechanics, 2019, 869, 385-416.	1.4	13
18	Modelling of hydrogen flame in perfectly clean combustion regimes using LES-CMC. Journal of Physics: Conference Series, 2019, 1398, 012016.	0.3	0

ARTUR TYLISZCZAK

#	Article	IF	CITATIONS
19	LES study of global instability in annular jets. International Journal of Heat and Fluid Flow, 2019, 79, 108460.	1.1	14
20	A 3D-CFD study of a $\hat{1}^3$ -type Stirling engine. Energy, 2019, 169, 142-159.	4.5	20
21	Large eddy simulations of wallâ€bounded flows using a simplified immersed boundary method and highâ€order compact schemes. International Journal for Numerical Methods in Fluids, 2018, 87, 358-381.	0.9	9
22	Implicit LES study of spark parameters impact on ignition in a temporally evolving mixing layer between H2/N2 mixture and air. International Journal of Hydrogen Energy, 2018, 43, 9815-9828.	3.8	15
23	Hybrid MPI/Open-MP acceleration approach for high-order schemes for CFD. Journal of Physics: Conference Series, 2018, 1101, 012031.	0.3	3
24	Numerical analysis of an impact of spray characteristics and co-flow temperature on a flame lift-off height. Journal of Physics: Conference Series, 2018, 1101, 012039.	0.3	1
25	Experimental and numerical research on heat and air flow through a granular material. Journal of Physics: Conference Series, 2018, 1101, 012043.	0.3	1
26	Parametric study of multi-armed jets. International Journal of Heat and Fluid Flow, 2018, 73, 82-100.	1.1	28
27	Numerical Predictions of Absolutely Unstable Round Hot Jet. ERCOFTAC Series, 2018, , 529-535.	0.1	Ο
28	LES-IB Study of Mixing Enhancement by Polygonal Orifices and Wavy Walls. ERCOFTAC Series, 2018, , 367-372.	0.1	0
29	Numerical simulation of free jets. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1056-1063.	1.6	14
30	LES - IB analysis of a flow in channel with an adverse pressure gradient Journal of Physics: Conference Series, 2016, 760, 012012.	0.3	0
31	Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions. Journal of Physics: Conference Series, 2016, 760, 012027.	0.3	Ο
32	Large eddy simulation predictions of absolutely unstable round hot jet. Physics of Fluids, 2016, 28, .	1.6	16
33	Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system. Applied Energy, 2016, 174, 153-165.	5.1	28
34	LES-CMC simulations of a turbulent hydrogen jet in oxy-combustion regimes. International Journal of Hydrogen Energy, 2016, 41, 9705-9717.	3.8	15
35	High-order compact difference algorithm on half-staggered meshes for low Mach number flows. Computers and Fluids, 2016, 127, 131-145.	1.3	42
36	Multi-armed jets: A subset of the blooming jets. Physics of Fluids, 2015, 27, .	1.6	27

ARTUR TYLISZCZAK

#	Article	IF	CITATIONS
37	Controlled mixing enhancement in turbulent rectangular jets responding to periodically forced inflow conditions. Journal of Turbulence, 2015, 16, 742-771.	0.5	22
38	LES Predictions of Self-Sustained Oscillations in Homogeneous Density Round Free Jet. Flow, Turbulence and Combustion, 2015, 95, 437-459.	1.4	24
39	Large eddy simulation of incompressible free round jet with discontinuous Galerkin method. International Journal for Numerical Methods in Fluids, 2015, 79, 164-182.	0.9	10
40	LES–CMC study of an excited hydrogen flame. Combustion and Flame, 2015, 162, 3864-3883.	2.8	29
41	Projection method for high-order compact schemes for low Mach number flows in enclosures. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 1141-1174.	1.6	11
42	LES/CMC of Blow-off in a Liquid Fueled Swirl Burner. Flow, Turbulence and Combustion, 2014, 92, 237-267.	1.4	70
43	A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows. Journal of Computational Physics, 2014, 276, 438-467.	1.9	53
44	Parametric Analysis of Excited Round Jets - Numerical Study. Flow, Turbulence and Combustion, 2014, 93, 221-247.	1.4	40
45	Application of time preconditioning and highâ€order compact discretization method for low Mach number flows. International Journal for Numerical Methods in Fluids, 2013, 72, 650-670.	0.9	10
46	Self-sustained oscillations in a homogeneous-density round jet. Journal of Turbulence, 2013, 14, 25-52.	0.5	26
47	LES/CMC Predictions of Spark Ignition Probability in a Liquid Fuelled Swirl Combustor. , 2013, , .		3
48	LES modeling of converging-diverging turbulent channel flow. Journal of Turbulence, 2012, 13, N11.	0.5	19
49	A new approach to sub-grid surface tension for LES of two-phase flows. Journal of Computational Physics, 2012, 231, 7368-7397.	1.9	39
50	Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor. Flow, Turbulence and Combustion, 2010, 85, 711-734.	1.4	62
51	LES of Variable Density Bifurcating Jets. , 2007, , 273-288.		11