Manuel Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4714518/publications.pdf

Version: 2024-02-01

159585 197818 2,604 72 30 49 h-index citations g-index papers 73 73 73 2235 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	What Affects Household Electricity Demand in Ecuador: Using Analytical Hierarchy Process to Read Homeowners' Perception. Smart Innovation, Systems and Technologies, 2022, , 139-149.	0.6	O
2	Circular economy of expanded polystyrene container production: Environmental benefits of household waste recycling considering renewable energies. Energy Reports, 2022, 8, 306-311.	5.1	21
3	Quantification and mapping of domestic plastic waste using GIS/GPS approach at the city of Guayaquil. Procedia CIRP, 2022, 105, 86-91.	1.9	7
4	Carbon and water footprint for the recycling process of expanded polystyrene (EPS) post-consumer waste Procedia CIRP, 2022, 105, 452-457.	1.9	12
5	Removal of emerging pollutants by a 3-step system: Hybrid digester, vertical flow constructed wetland and photodegradation post-treatments. Science of the Total Environment, 2022, 842, 156750.	8.0	15
6	Integrated valorization of Sargassum muticum in biorefineries. Chemical Engineering Journal, 2021, 404, 125635.	12.7	21
7	Co-composting of forest and industrial wastes watered with pig manure. Environmental Technology (United Kingdom), 2021, 42, 705-716.	2.2	6
8	Improving the performance of vertical flow constructed wetlands by modifying the filtering media structure. Environmental Science and Pollution Research, 2021, 28, 56852-56864.	5.3	1
9	Influence of nutrients and pH on the efficiency of vertical flow constructed wetlands treating winery wastewater. Journal of Water Process Engineering, 2021, 42, 102103.	5.6	9
10	Integration of food waste composting and vegetable gardens in a university campus. Journal of Cleaner Production, 2021, 315, 128175.	9.3	45
11	Nature based solutions for winery wastewater valorisation. Ecological Engineering, 2021, 169, 106311.	3.6	11
12	Introduction of the circular economy to expanded polystyrene household waste: A case study from an Ecuadorian plastic manufacturer. Procedia CIRP, 2020, 90, 49-54.	1.9	13
13	Methane production potential and anaerobic treatability of wastewater and sludge from medium density fibreboard manufacturing. Journal of Cleaner Production, 2020, 277, 123283.	9.3	3
14	Effect of different bypass rates and unit area ratio in hybrid constructed wetlands. Environmental Science and Pollution Research, 2020, 27, 40355-40369.	5.3	5
15	SOSTAUGA project: reduction of water consumption and evaluation of potential uses for endogenous resources. International Journal of Sustainability in Higher Education, 2020, 21, 1391-1411.	3.1	2
16	Development of Technologies for Local Composting of Food Waste from Universities. International Journal of Environmental Research and Public Health, 2020, 17, 3153.	2.6	16
17	Constructed Wetlands for Industrial Wastewater Treatment and Removal of Nutrients. , 2020, , 559-587.		1
18	Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure. Environmental Technology (United Kingdom), 2018, 39, 2017-2029.	2.2	9

#	Article	IF	Citations
19	Microbial Activities and Process Rates in Two-Step Vertical and Horizontal Subsurface Flow Gravel and Sand Filters. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	10
20	Hydrolytic anaerobic reactor and aerated constructed wetland systems for municipal wastewater treatment $\hat{a} \in \text{HIGHWET}$ project. Environmental Technology (United Kingdom), 2017, 38, 209-219.	2.2	12
21	Composting of pig manure and forest green waste amended with industrial sludge. Science of the Total Environment, 2017, 586, 1228-1236.	8.0	31
22	Integrating pretreatment and denitrification in constructed wetland systems. Science of the Total Environment, 2017, 584-585, 1300-1309.	8.0	24
23	The efficiency of home composting programmes and compost quality. Waste Management, 2017, 64, 39-50.	7.4	84
24	Effect of step-feeding on the performance of lab-scale columns simulating vertical flow-horizontal flow constructed wetlands. Environmental Science and Pollution Research, 2017, 24, 22649-22662.	5.3	29
25	Methanogenic activity of accumulated solids and gas emissions from planted and unplanted shallow horizontal subsurface flow constructed wetlands. Ecological Engineering, 2017, 98, 297-306.	3.6	12
26	Aerobic and anaerobic biodegradability of accumulated solids in horizontal subsurface flow constructed wetlands. International Biodeterioration and Biodegradation, 2017, 119, 396-404.	3.9	39
27	Constructed Wetlands for Industrial Wastewater Treatment and Removal of Nutrients. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 202-230.	0.4	8
28	Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment. Water Research, 2016, 103, 92-100.	11.3	74
29	Effect of plants and surface loading rate on the treatment efficiency of shallow subsurface constructed wetlands. Ecological Engineering, 2016, 90, 203-214.	3.6	61
30	Integrating liquid fraction of pig manure in the composting process for nutrient recovery and water re-use. Journal of Cleaner Production, 2015, 104, 80-89.	9.3	35
31	Wineries wastewater treatment by constructed wetlands: a review. Water Science and Technology, 2015, 71, 1113-1127.	2.5	40
32	Methane potential and anaerobic treatment feasibility of Sargassum muticum. Bioresource Technology, 2015, 189, 53-61.	9.6	33
33	Methane and carbon dioxide emissions from constructed wetlands receiving anaerobically pretreated sewage. Science of the Total Environment, 2015, 538, 824-833.	8.0	45
34	Physico-chemical and biological characteristics of compost from decentralised composting programmes. Bioresource Technology, 2015, 198, 520-532.	9.6	21
35	Vertical flow constructed wetland treating high strength wastewater from swine slurry composting. Ecological Engineering, 2013, 50, 37-43.	3.6	38
36	Winery Wastewater Treatment in Subsurface Constructed Wetlands with Different Bed Depths. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	25

3

#	Article	IF	CITATIONS
37	Heavy metal removal in an UASB-CW system treating municipal wastewater. Chemosphere, 2013, 93, 1317-1323.	8.2	27
38	Avoiding clogging in constructed wetlands by using anaerobic digesters as pre-treatment. Ecological Engineering, 2013, 52, 262-269.	3.6	80
39	Evaluation of PPCPs removal in a combined anaerobic digester-constructed wetland pilot plant treating urban wastewater. Chemosphere, 2011, 84, 1200-1207.	8.2	95
40	Winery wastewater treatment in a hybrid constructed wetland. Ecological Engineering, 2011, 37, 744-753.	3.6	108
41	Solids hydrolysis and accumulation in a hybrid anaerobic digester-constructed wetlands system. Ecological Engineering, 2010, 36, 1007-1016.	3.6	44
42	Methanogenic toxicity in anaerobic digesters treating municipal wastewater. Bioresource Technology, 2009, 100, 97-103.	9.6	14
43	Anaerobic digesters as a pretreatment for constructed wetlands. Ecological Engineering, 2008, 33, 54-67.	3.6	112
44	Performance of an anaerobic digester-constructed wetland system for a small community. Ecological Engineering, 2008, 33, 142-149.	3.6	41
45	Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresource Technology, 2008, 99, 7051-7062.	9.6	82
46	MUNICIPAL WASTEWATER TREATMENT IN AN ANAEROBIC DIGESTER ONSTRUCTED WETLAND SYSTEM. Environmental Technology (United Kingdom), 2008, 29, 1249-1256.	2.2	20
47	CHARACTERISTICS AND ANAEROBIC TREATABILITY OF MUNICIPAL AND INDUSTRIAL ESTATE WASTEWATERS. Environmental Technology (United Kingdom), 2007, 28, 1063-1072.	2.2	5
48	Anaerobic biodegradability and toxicity of eucalyptus fiber board manufacturing wastewater. Journal of Chemical Technology and Biotechnology, 2007, 52, 163-176.	3.2	9
49	Anaerobic biodegradation tests and gas emissions from subsurface flow constructed wetlands. Bioresource Technology, 2007, 98, 3044-3052.	9.6	50
50	Start-up alternatives and performance of an UASB pilot plant treating diluted municipal wastewater at low temperature. Bioresource Technology, 2006, 97, 1640-1649.	9.6	71
51	Performance of a UASB-Digester System Treating Domestic Wastewater. Environmental Technology (United Kingdom), 2004, 25, 1189-1199.	2.2	22
52	Anaerobic hydrolysis of primary sludge: influence of sludge concentration and temperature. Water Science and Technology, 2003, 47, 239-246.	2.5	58
53	Anaerobic hydrolysis of a municipal wastewater in a pilot-scale digester. Water Science and Technology, 2003, 47, 223-230.	2.5	29
54	Anaerobic hydrolysis of primary sludge: influence of sludge concentration and temperature. Water Science and Technology, 2003, 47, 239-46.	2.5	4

#	Article	IF	CITATIONS
55	Sludge granulation during anaerobic treatment of pre-hydrolysed domestic wastewater. Water S A, 2002, 28, 307.	0.4	7
56	Influence of HRT (hydraulic retention time) and SRT (solid retention time) on the hydrolytic pre-treatment of urban wastewater. Water Science and Technology, 2001, 44, 7-14.	2.5	14
57	Pretreatment of urban wastewaters in a hydrolytic upflow digester. Water S A, 2001, 27, 399.	0.4	11
58	Influence of bleaching technologies on the aerobic biodegradability of effluents from Eucalyptus kraft pulps factories. Brazilian Archives of Biology and Technology, 1999, 42, 323-330.	0.5	1
59	Sludge Granulation in UASB Digesters Treating Low Strength Wastewaters at Mesophilic and Psychrophilic Temperatures. Environmental Technology (United Kingdom), 1997, 18, 1133-1141.	2.2	10
60	Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps. Water Research, 1997, 31, 2487-2494.	11.3	37
61	Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena. Enzyme and Microbial Technology, 1995, 17, 180-188.	3.2	221
62	Contribution of extractives to methanogenic toxicity of hemp black liquor. Journal of Bioscience and Bioengineering, 1995, 80, 383-388.	0.9	17
63	Treatment of seafood-processing wastewaters in mesophilic and thermophilic anaerobic filters. Water Environment Research, 1995, 67, 33-45.	2.7	61
64	Methanogenic and non-methanogenic activity tests. Theoretical basis and experimental set up. Water Research, 1993, 27, 1361-1376.	11.3	250
65	Sodium inhibition and sulphate reduction in the anaerobic treatment of mussel processing wastewaters. Journal of Chemical Technology and Biotechnology, 1993, 58, 1-7.	3.2	44
66	Characterization and Comparison of Biomass from Mesophilic and Thermophilic Fixed Bed Anaerobic Digesters. Water Science and Technology, 1992, 25, 203-212.	2.5	24
67	Pilot Plant Studies on the Anaerobic Treatment of Different Wastewaters from a Fish-Canning Factory. Water Science and Technology, 1992, 25, 37-44.	2.5	43
68	Biodegradability and toxicity in the anaerobic treatment of fish canning wastewaters. Environmental Technology (United Kingdom), 1991, 12, 669-677.	2.2	48
69	A new device for measurement and control of gas production by bench scale anaerobic digesters. Water Research, 1990, 24, 1551-1554.	11.3	53
70	Semiâ€micro C.O.D. determination method for highâ€salinity wastewater. Environmental Technology Letters, 1989, 10, 541-548.	0.4	64
71	Mapeando a eficiencia no consumo da auga. , 0, , 383-402.		2
72	Application of organic wastes to soils and legislative intricacies in a circular economy context. Clean Technologies and Environmental Policy, 0 , 1 .	4.1	6