Peter J Lawrence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4714481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparison of Land Surface Phenology in the Northern Hemisphere Derived from Satellite Remote Sensing and the Community Land Model. Journal of Hydrometeorology, 2022, 23, 859-873.	0.7	5
2	Strong regional influence of climatic forcing datasets on global crop model ensembles. Agricultural and Forest Meteorology, 2021, 300, 108313.	1.9	17
3	Worldwide Maize and Soybean Yield Response to Environmental and Management Factors Over the 20th and 21st Centuries. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006304.	1.3	9
4	Exposure to cold temperature affects the spring phenology of Alaskan deciduous vegetation types. Environmental Research Letters, 2020, 15, 025006.	2.2	6
5	Land Use and Land Cover Change Strongly Modulates Landâ€Atmosphere Coupling and Warmâ€Season Precipitation Over the Central United States in CESM2â€VR. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001925.	1.3	11
6	A Comparison of the CMIP6 <i>midHolocene</i> and <i>lig127k</i> Simulations in CESM2. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003957.	1.3	14
7	Simulating Agriculture in the Community Land Model Version 5. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005529.	1.3	53
8	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	8.1	152
9	Global climate response to idealized deforestation in CMIP6 models. Biogeosciences, 2020, 17, 5615-5638.	1.3	55
10	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	1.3	408
11	The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11, 4245-4287.	1.3	692
12	Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble. PLoS ONE, 2019, 14, e0221862.	1.1	42
13	The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data, 2019, 6, 50.	2.4	57
14	Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. Nature Communications, 2019, 10, 939.	5.8	61
15	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	5.8	168
16	Evaluating the Interplay Between Biophysical Processes and Leaf Area Changes in Land Surface Models. Journal of Advances in Modeling Earth Systems, 2018, 10, 1102-1126.	1.3	22
17	Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Climatic Change, 2018, 146, 517-531.	1.7	36
18	Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 2018, 24, 35-54.	4.2	478

Peter J Lawrence

#	Article	IF	CITATIONS
19	Global patterns of crop yield stability under additional nutrient and water inputs. PLoS ONE, 2018, 13, e0198748.	1.1	40
20	Attributing the Carbon Cycle Impacts of CMIP5 Historical and Future Land Use and Land Cover Change in the Community Earth System Model (CESM1). Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1732-1755.	1.3	20
21	Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth System Science Data, 2018, 10, 1265-1279.	3.7	46
22	Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 903-917.	1.3	74
23	Interactions between land use change and carbon cycle feedbacks. Global Biogeochemical Cycles, 2017, 31, 96-113.	1.9	46
24	Spatial and temporal uncertainty of crop yield aggregations. European Journal of Agronomy, 2017, 88, 10-21.	1.9	63
25	Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 2017, 10, 1403-1422.	1.3	213
26	The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development, 2016, 9, 2973-2998.	1.3	343
27	Assessing the use of subgrid land model output to study impacts of land cover change. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6133-6147.	1.2	57
28	Impact of land cover characterization on regional climate modeling over West Africa. Climate Dynamics, 2016, 46, 637-650.	1.7	43
29	Environmental drivers of drought deciduous phenology in the Community Land Model. Biogeosciences, 2015, 12, 5061-5074.	1.3	53
30	Last Millennium Climate and Its Variability in CCSM4. Journal of Climate, 2013, 26, 1085-1111.	1.2	198
31	Simulating the mid-Pliocene Warm Period with the CCSM4 model. Geoscientific Model Development, 2013, 6, 549-561.	1.3	62
32	The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr. Earth System Dynamics, 2013, 4, 333-345.	2.7	32
33	Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. Journal of Climate, 2012, 25, 3071-3095.	1.2	255
34	Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments. Journal of Climate, 2012, 25, 3261-3281.	1.2	313
35	The CCSM4 Land Simulation, 1850–2005: Assessment of Surface Climate and New Capabilities. Journal of Climate, 2012, 25, 2240-2260.	1.2	276
36	Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. Journal of Geophysical Research, 2011, 116, .	3.3	522

Peter J Lawrence

#	Article	IF	CITATIONS
37	Land use change exacerbates tropical South American drought by sea surface temperature variability. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	44
38	Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 2011, 3, .	1.3	666
39	Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 2011, 3, n/a-n/a.	1.3	367
40	Investigating the climate impacts of global land cover change in the community climate system model. International Journal of Climatology, 2010, 30, 2066-2087.	1.5	192
41	Effects of irrigation and vegetation activity on early Indian summer monsoon variability. International Journal of Climatology, 2009, 29, 573-581.	1.5	117
42	Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophysical Research Letters, 2009, 36, .	1.5	444
43	Climate Impacts of Making Evapotranspiration in the Community Land Model (CLM3) Consistent with the Simple Biosphere Model (SiB). Journal of Hydrometeorology, 2009, 10, 374-394.	0.7	32
44	Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of Geophysical Research, 2008, 113, .	3.3	649
45	Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). Journal of Geophysical Research, 2007, 112, .	3.3	460
46	Modeling the impact of historical land cover change on Australia's regional climate. Geophysical Research Letters, 2007, 34, .	1.5	78