Zhenjiang You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4714343/publications.pdf

Version: 2024-02-01

214721 172386 2,715 124 29 47 citations h-index g-index papers 124 124 124 1216 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic fracture width prediction for lost circulation control and formation damage prevention in ultra-deep fractured tight reservoir. Fuel, 2022, 307, 121770.	3.4	25
2	Morphology of MoS2 nanosheets and its influence on water/oil interfacial tension: A molecular dynamics study. Fuel, 2022, 312, 122938.	3.4	7
3	Numerical investigation of proppant transport at hydraulic-natural fracture intersection. Powder Technology, 2022, 398, 117123.	2.1	12
4	Review on physical and chemical factors affecting fines migration in porous media. Water Research, 2022, 214, 118172.	5. 3	23
5	Multiphysics responses of coal seam gas extraction with borehole sealed by active support sealing method and its applications. Journal of Natural Gas Science and Engineering, 2022, 100, 104466.	2.1	11
6	Physical plugging of lost circulation fractures at microscopic level. Fuel, 2022, 317, 123477.	3.4	34
7	Modeling and Economic Analyses of Graded Particle Injections in Conjunction with Hydraulic Fracturing of Coal Seam Gas Reservoirs. SPE Journal, 2022, 27, 1633-1647.	1.7	6
8	Influences of negative pressure on air-leakage of coalseam gas extraction: Laboratory and CFD-DEM simulations. Journal of Petroleum Science and Engineering, 2021, 196, 107731.	2.1	20
9	Uncertainties associated with laboratory-based predictions of well index and formation damage. Measurement: Journal of the International Measurement Confederation, 2021, 170, 108731.	2.5	2
10	Oil Displacement Performance Using Bilayer-Coating Microspheres. Industrial & Engineering Chemistry Research, 2021, 60, 2300-2313.	1.8	3
11	Evaluation of Coal Body Structures and Their Distributions by Geophysical Logging Methods: Case Study in the Laochang Block, Eastern Yunnan, China. Natural Resources Research, 2021, 30, 2225-2239.	2.2	32
12	Application of percolation, critical-path, and effective-medium theories for calculation of two-phase relative permeability. Physical Review E, 2021, 103, 043306.	0.8	8
13	Detachment of coal fines deposited in proppant packs induced by single-phase water flow: Theoretical and experimental analyses. International Journal of Coal Geology, 2021, 239, 103728.	1.9	22
14	Profile Control Using Fly Ash Three-Phase Foam Assisted by Microspheres with an Adhesive Coating. Applied Sciences (Switzerland), 2021, 11, 3616.	1.3	3
15	Effects of Velocity and Permeability on Tracer Dispersion in Porous Media. Applied Sciences (Switzerland), 2021, 11, 4411.	1.3	7
16	Distribution Characteristics of In Situ Stress Field and Vertical Development Unit Division of CBM in Western Guizhou, China. Natural Resources Research, 2021, 30, 3659-3671.	2.2	19
17	Numerical investigation of the effects of proppant embedment on fracture permeability and well production in Queensland coal seam gas reservoirs. International Journal of Coal Geology, 2021, 242, 103689.	1.9	22
18	Effects of Proppant Wettability and Size on Transport and Retention of Coal Fines in Saturated Proppant Packs: Experimental and Theoretical Studies. Energy & Energy & 1976-11991.	2.5	24

#	Article	IF	Citations
19	Prediction of coalbed methane production based on deep learning. Energy, 2021, 230, 120847.	4.5	43
20	Improved modelling of pressure-dependent permeability behaviour in coal based on a new workflow of petrophysics, hydraulic fracturing and reservoir simulation. APPEA Journal, 2021, 61, 106.	0.4	3
21	Modelling vertical water distribution and separation in the unsaturated coal and iron ores during oscillation. Powder Technology, 2021, 397, 116996-116996.	2.1	0
22	Micro-proppant placement in hydraulic and natural fracture stimulation in unconventional reservoirs: A review. Energy Reports, 2021, 7, 8997-9022.	2.5	32
23	Modelling and Economic Analyses of Graded Particle Injections in Conjunction with Hydraulically Fracturing of Coal Seam Gas Reservoirs. , 2021 , , .		5
24	Admissible Parameters for Two-Phase Coreflood and Welge–JBN Method. Transport in Porous Media, 2020, 131, 831-871.	1.2	15
25	A novel material evaluation method for lost circulation control and formation damage prevention in deep fractured tight reservoir. Energy, 2020, 210, 118574.	4.5	34
26	Multi-Phase Tectonic Movements and Their Controls on Coalbed Methane: A Case Study of No. 9 Coal Seam from Eastern Yunnan, SW China. Energies, 2020, 13, 6003.	1.6	14
27	The effects of cross-formational water flow on production in coal seam gas reservoir: A case study of Qinshui Basin in China. Journal of Petroleum Science and Engineering, 2020, 194, 107516.	2.1	10
28	Pore Structure Characteristics of Coal and Their Geological Controlling Factors in Eastern Yunnan and Western Guizhou, China. ACS Omega, 2020, 5, 19565-19578.	1.6	34
29	Fracture plugging zone for lost circulation control in fractured reservoirs: Multiscale structure and structure characterization methods. Powder Technology, 2020, 370, 159-175.	2.1	29
30	Supercritical Methane Adsorption on Shale over Wide Pressure and Temperature Ranges: Implications for Gas-in-Place Estimation. Energy & Energy & 2020, 34, 3121-3134.	2.5	49
31	Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection. Applied Mathematics and Mechanics (English Edition), 2020, 41, 491-506.	1.9	7
32	Enhanced Oil Recovery Using Oleic Acid-Modified Titania Nanofluids: Underlying Mechanisms and Oil-Displacement Performance. Energy & Samp; Fuels, 2020, 34, 5813-5822.	2.5	23
33	Modeling Tracer Flow Characteristics in Different Types of Pores: Visualization and Mathematical Modeling. CMES - Computer Modeling in Engineering and Sciences, 2020, 123, 1205-1222.	0.8	2
34	Shear thickening effects of drag-reducing nanoï¬,uids for low permeability reservoir. Advances in Geo-Energy Research, 2020, 4, 317-325.	3.1	13
35	Integrating Reservoir Characterisation, Diagnostic Fracture Injection Testing, Hydraulic Fracturing and Post-Frac Well Production Data to Define Pressure Dependent Permeability Behavior in Coal. , 2020, , .		8
36	First principles calculation of UO2 polymorphs and phase transitions under compressive and tensile loading. Computational Materials Science, 2019, 169, 109124.	1.4	9

#	Article	IF	CITATIONS
37	Atomistic simulation of fracture in UO2 under tensile loading. Journal of Alloys and Compounds, 2019, 803, 42-50.	2.8	3
38	Effects of numerical dispersion on pressure diffusion in CBM reservoirs. Fuel, 2019, 251, 534-542.	3.4	11
39	Study on the Plugging Performance of Bilayer-Coating Microspheres for In-Depth Conformance Control: Experimental Study and Mathematical Modeling. Industrial & Engineering Chemistry Research, 2019, 58, 6796-6810.	1.8	10
40	Friction coefficient: A significant parameter for lost circulation control and material selection in naturally fractured reservoir. Energy, 2019, 174, 1012-1025.	4. 5	50
41	Effect of rotational diffusion of anisotropic particles on the stability of a suspension shear flow. Fluid Dynamics Research, 2019, 51, 035507.	0.6	1
42	Influence of elastoplastic embedment on CSG production enhancement using graded particle injection. APPEA Journal, 2019, 59, 310.	0.4	9
43	Numerical Simulation Study of Fines Migration Impacts on an Early Water Drainage Period in Undersaturated Coal Seam Gas Reservoirs. Geofluids, 2019, 2019, 1-16.	0.3	11
44	Fines migration in geothermal reservoirs: Laboratory and mathematical modelling. Geothermics, 2019, 77, 344-367.	1.5	67
45	Produced Water Re-Injection and Disposal in Low Permeable Reservoirs. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	1.4	7
46	Development of Predictive Models in Support of Micro-Particle Injection in Naturally Fractured Reservoirs. , 2019, , .		6
47	Evaluating Performance of Graded Proppant Injection into CSG Reservoir: A Reservoir Simulation Study., 2019,,.		2
48	Stochastic modelling of particulate suspension transport for formation damage prediction in fractured tight reservoir. Fuel, 2018, 221, 476-490.	3.4	52
49	Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs. Fuel, 2018, 222, 193-206.	3.4	66
50	Well Productivity Impairment Due to Fines Migration. , 2018, , .		7
51	Effect of low velocity non-Darcy flow on pressure response in shale and tight oil reservoirs. Fuel, 2018, 216, 398-406.	3.4	52
52	Productivity index enhancement by wettability alteration in two-phase compressible flows. Journal of Natural Gas Science and Engineering, 2018, 50, 101-114.	2.1	28
53	Study on Pulse Characteristic of Produced Crude Composition in CO2 Flooding Pilot Test. Geofluids, 2018, 2018, 1-5.	0.3	1
54	Application of modified Dykstra-Parsons method to natural bottom-water drive in non-communicating fractured-vuggy reservoir. Journal of Petroleum Science and Engineering, 2018, 167, 682-691.	2.1	3

#	Article	IF	CITATIONS
55	Experimental Study on Expansion Characteristics of Core-Shell and Polymeric Microspheres. Journal of Nanotechnology, 2018, 2018, 1-9.	1.5	3
56	Well productivity enhancement by applying nanofluids for wettability alteration. APPEA Journal, 2018, 58, 121.	0.4	3
57	Formation Damage Challenges in Geothermal Reservoirs. , 2018, , 447-497.		O
58	Formation Damage by Fines Migration. , 2018, , 69-175.		20
59	Effect of kaolinite content on formation damage due to fines migration: systematic laboratory and modelling study. APPEA Journal, 2018, 58, 743.	0.4	1
60	An analytical model for pore volume compressibility of reservoir rock. Fuel, 2018, 232, 543-549.	3.4	27
61	A new capillary pressure model for fractal porous media using percolation theory. Journal of Natural Gas Science and Engineering, 2017, 41, 7-16.	2.1	27
62	Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 277-282.	2.6	19
63	Low-Salinity Fines-Assisted Waterflooding: Multiscale Analytical and Numerical Modelling. , 2017, , .		1
64	Mechanical, electronic and thermodynamic properties of hexagonal and orthorhombic U 2 Mo: A first-principle calculation. Progress in Nuclear Energy, 2017, 99, 110-118.	1.3	9
65	Analytical model of plugging zone strength for drill-in fluid loss control and formation damage prevention in fractured tight reservoir. Journal of Petroleum Science and Engineering, 2017, 149, 686-700.	2.1	49
66	Lost-Circulation Control for Formation-Damage Prevention in Naturally Fractured Reservoir: Mathematical Model and Experimental Study. SPE Journal, 2017, 22, 1654-1670.	1.7	75
67	Analytical model for straining-dominant large-retention depth filtration. Chemical Engineering Journal, 2017, 330, 1148-1159.	6.6	58
68	Comments on "Comments on "Reply to comments on "Analytical derivation of Brooks–Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneityâ€â€â€ê Journal of Petroleum Science and Engineering, 2017, 159, 614-616.	2.1	3
69	Critical Conditions for Massive Fines Detachment Induced by Single-Phase Flow in Coalbed Methane Reservoirs: Modeling and Experiments. Energy & Samp; Fuels, 2017, 31, 6782-6793.	2.5	51
70	Laboratory and Mathematical Modelling of Fines Production from CSG Interburden Rocks., 2016,,.		4
71	Review on formation damage mechanisms and processes in shale gas reservoir: Known and to be known. Journal of Natural Gas Science and Engineering, 2016, 36, 1208-1219.	2.1	137
72	Fracture plugging optimization for drill-in fluid loss control and formation damage prevention in fractured tight reservoir. Journal of Natural Gas Science and Engineering, 2016, 35, 1216-1227.	2.1	40

#	Article	IF	Citations
73	Slow migration of detached fine particles over rock surface in porous media. Journal of Natural Gas Science and Engineering, 2016, 34, 1159-1173.	2.1	80
74	Mathematical Model and Experimental Study on Drill-In Fluid Loss Control and Formation Damage Prevention in Fractured Tight Reservoir. , 2016, , .		0
75	Modelling of Slow Fines Migration and Formation Damage During Rate Alteration. , 2016, , .		3
76	Prevention of Water-Blocking Formation Damage in Gas Reservoirs Wettability Alteration, Analytical Modelling. , 2016, , .		2
77	Identifying the Source and Magnitude of Formation Damage from Pressure and Temperature Profiles. , 2016, , .		O
78	A New Phenomenon of Slow Fines Migration in Oil and Gas Fields (Laboratory and Mathematical) Tj ETQq0 0 0 rg	gBT /Overl	ock 10 Tf 50 5
79	Injectivity Impairment During Produced Water Disposal into Low-Permeability Völkersen Aquifer (Compressibility and Reservoir Boundary Effects). , 2016, , .		1
80	Mathematical modelling of fines migration in geothermal reservoirs. Geothermics, 2016, 59, 123-133.	1.5	92
81	Particle mobilization in porous media: Temperature effects on competing electrostatic and drag forces. Geophysical Research Letters, 2015, 42, 2852-2860.	1.5	98
82	New Laboratory Method to Assess Formation Damage in Geothermal Wells. , 2015, , .		0
83	Effect of Wettability Alteration on Productivity Enhancement in Unconventional Gas Reservoirs: Application of Nanotechnology. , 2015, , .		3
84	Depth Distribution of Gas Rates From Temperature and Pressure Profiles in Unconventional Gas Wells. , 2015, , .		0
85	Prediction of Gas Rates from Different Layers by Temperature Distributions in Wells: Application to Unconventional Fields., 2015,,.		0
86	Injectivity during PWRI and Disposal in Thick Low Permeable Formations (Laboratory and Mathematical) Tj ETQq(0 0 0 rgBT	[*] /Overlock 10
87	Mathematical Modelling of Non-Uniform External Cake Profile in Long Injection Wells. , 2015, , .		4
88	Deep bed and cake filtration of two-size particle suspension in porous media. Journal of Petroleum Science and Engineering, 2015, 126, 201-210.	2.1	55
89	Modeling of aggregation kinetics by a new moment method. Applied Mathematical Modelling, 2015, 39, 6915-6924.	2.2	5
90	Rate enhancement in unconventional gas reservoirs by wettability alteration. Journal of Natural Gas Science and Engineering, 2015, 26, 1573-1584.	2.1	46

#	Article	IF	Citations
91	Stability of jets in a shallow water layer. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 358-374.	1.6	4
92	Nonuniform External Filter Cake in Long Injection Wells. Industrial & Engineering Chemistry Research, 2015, 54, 3051-3061.	1.8	39
93	Numerical modeling of fine particle fractal aggregates in turbulent flow. Thermal Science, 2015, 19, 1189-1193.	0.5	0
94	Size exclusion deep bed filtration: Experimental and modelling uncertainties. Review of Scientific Instruments, 2014, 85, 015111.	0.6	22
95	Slow migration of mobilised fines during flow in reservoir rocks: Laboratory study. Journal of Petroleum Science and Engineering, 2014, 122, 534-541.	2.1	93
96	Asymptotic model for deep bed filtration. Chemical Engineering Journal, 2014, 258, 374-385.	6.6	74
97	Fines Migration in Fractured Wells: Integrating Modeling With Field and Laboratory Data. SPE Production and Operations, 2014, 29, 309-322.	0.4	18
98	Effect of circumferential wave number on stability of suspension flow. Thermal Science, 2014, 18, 1517-1523.	0.5	0
99	Improved population balance model for straining-dominant deep bed filtration using network calculations. Chemical Engineering Journal, 2013, 226, 227-237.	6.6	34
100	Exact Solution for Long-Term Size Exclusion Suspension-Colloidal Transport in Porous Media. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.3	20
101	Model of fractal aggregates induced by shear. Thermal Science, 2013, 17, 1403-1408.	0.5	4
102	Size-Exclusion Colloidal Transport in Porous Media-Stochastic Modeling and Experimental Study. SPE Journal, 2013, 18, 620-633.	1.7	60
103	Dynamic stability of non-dilute fiber shear suspensions. Thermal Science, 2012, 16, 1551-1555.	0.5	6
104	Critical analysis of uncertainties during particle filtration. Review of Scientific Instruments, 2012, 83, 095106.	0.6	13
105	Determining gas rate distribution from temperature and pressure profiles in gas well. Thermal Science, 2012, 16, 1339-1343.	0.5	1
106	Transport and straining of suspensions in porous media: Experimental and theoretical study. Thermal Science, 2012, 16, 1344-1348.	0.5	2
107	Method of Taylor Expansion Moment Incorporating Fractal Theories for Brownian Coagulation of Fine Particles. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13, 459-467.	0.4	14
108	Estimating filtration coefficients for straining from percolation and random walk theories. Chemical Engineering Journal, 2012, 210, 63-73.	6.6	54

#	Article	IF	CITATIONS
109	Pore size distribution from challenge coreflood testing by colloidal flow. Chemical Engineering Research and Design, 2012, 90, 63-77.	2.7	43
110	New expression for collision efficiency of spherical nanoparticles in Brownian coagulation. Applied Mathematics and Mechanics (English Edition), 2010, 31, 851-860.	1.9	6
111	Prolegomena to variational inequalities and numerical schemes for compressible viscoplastic fluids. Journal of Non-Newtonian Fluid Mechanics, 2009, 158, 113-126.	1.0	12
112	Application of the Lambert W function to steady shearing flows of the Papanastasiou model. International Journal of Engineering Science, 2008, 46, 799-808.	2.7	14
113	RESEARCH ON THE SPECIFIC VISCOSITY OF SEMI-CONCENTRATED FIBER SUSPENSIONS. Modern Physics Letters B, 2008, 22, 2857-2868.	1.0	1
114	LARGE EDDY SIMULATION OF SEDIMENT-LADEN TURBULENT FLOW IN AN OPEN CHANNEL. International Journal of Modern Physics B, 2008, 22, 2517-2527.	1.0	5
115	Operator-Splitting Schemes for the Flows of Compressible Viscoplastic Fluids. AIP Conference Proceedings, 2008, , .	0.3	O
116	THE EFFECTS OF CLOSURE MODEL OF FIBER ORIENTATION TENSOR ON THE INSTABILITY OF FIBER SUSPENSIONS IN THE TAYLOR–COUETTE FLOW. Modern Physics Letters B, 2007, 21, 1611-1625.	1.0	9
117	Primary instabilities and bicriticality in fiber suspensions between rotating cylinders. Journal of Zhejiang University: Science A, 2007, 8, 1435-1442.	1.3	1
118	On the importance of the pressure dependence of viscosity in steady non-isothermal shearing flows of compressible and incompressible fluids and in the isothermal fountain flow. Journal of Non-Newtonian Fluid Mechanics, 2006, 136, 106-117.	1.0	18
119	Non-axisymmetric instability in the Taylor-Couette flow of fiber suspension. Journal of Zhejiang University: Science A, 2005, 6, 1-7.	1.3	5
120	Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel–Bulkley fluids. Journal of Non-Newtonian Fluid Mechanics, 2005, 128, 126-143.	1.0	106
121	Effects of tensor closure models and 3-D orientation on the stability of fiber suspensions in a channel flow. Applied Mathematics and Mechanics (English Edition), 2005, 26, 307-312.	1.9	6
122	Hydrodynamic instability of fiber suspensions in channel flows. Fluid Dynamics Research, 2004, 34, 251-271.	0.6	31
123	Effects of the aspect ratio on the sedimentation of a fiber in Newtonian fluids. Journal of Aerosol Science, 2003, 34, 909-921.	1.8	81
124	Stability in channel flow with fiber suspensions. Progress in Natural Science: Materials International, 2003, 13, 95.	1.8	1