
Michael A D Goodisman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Social structure of perennial <i>Vespula squamosa</i> wasp colonies. Ecology and Evolution, 2022, 12, e8569.	0.8	3
2	The impact of epigenetic information on genome evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200114.	1.8	17
3	Editorial overview: Social insects as invasive species. Current Opinion in Insect Science, 2021, 46, iii-v.	2.2	2
4	Temporal Analysis of Effective Population Size and Mating System in a Social Wasp. Journal of Heredity, 2021, 112, 626-634.	1.0	5
5	Non-kin Cooperation in Ants. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5
6	Gene content evolution in the arthropods. Genome Biology, 2020, 21, 15.	3.8	150
7	Gene Duplication in the Honeybee: Patterns of DNA Methylation, Gene Expression, and Genomic Environment. Molecular Biology and Evolution, 2020, 37, 2322-2331.	3.5	16
8	Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity. Annual Review of Entomology, 2019, 64, 185-203.	5.7	137
9	The Toxicogenome of <i>Hyalella azteca</i> : A Model for Sediment Ecotoxicology and Evolutionary Toxicology. Environmental Science & Technology, 2018, 52, 6009-6022.	4.6	79
10	Genetic diversity and sex ratio of naked mole rat, <i>Heterocephalus glaber</i> , zoo populations. Zoo Biology, 2018, 37, 171-182.	0.5	3
11	Collective clog control: Optimizing traffic flow in confined biological and robophysical excavation. Science, 2018, 361, 672-677.	6.0	42
12	Gene duplication and the evolution of phenotypic diversity in insect societies. Evolution; International Journal of Organic Evolution, 2017, 71, 2871-2884.	1.1	30
13	The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Scientific Reports, 2016, 6, 37110.	1.6	139
14	Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biology, 2016, 17, 227.	3.8	244
15	Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects. G3: Genes, Genomes, Genetics, 2016, 6, 357-363.	0.8	37
16	Population genetic structure of the predatory, social wasp <i><scp>V</scp>espula pensylvanica</i> in its native and invasive range. Ecology and Evolution, 2015, 5, 5573-5587.	0.8	14
17	Behavioral and mechanical determinants of collective subsurface nest excavation. Journal of Experimental Biology, 2015, 218, 1295-1305.	0.8	44
18	Glass-like dynamics in confined and congested ant traffic. Soft Matter, 2015, 11, 6552-6561.	1.2	37

#	Article	IF	CITATIONS
19	Epigenetics in Social Insects. Advances in Insect Physiology, 2015, 48, 227-269.	1.1	15
20	DNA Methylation and Chromatin Organization in Insects: Insights from the Ant Camponotus floridanus. Genome Biology and Evolution, 2015, 7, 931-942.	1.1	30
21	Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 1139-1143.	6.0	357
22	Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biological Invasions, 2014, 16, 283-294.	1.2	28
23	Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140411.	1.2	36
24	Molecular traces of alternative social organization in a termite genome. Nature Communications, 2014, 5, 3636.	5.8	371
25	Evolutionary insights into DNA methylation in insects. Current Opinion in Insect Science, 2014, 1, 25-30.	2.2	82
26	Evidence of a conserved functional role for <scp>DNA</scp> methylation in termites. Insect Molecular Biology, 2013, 22, 143-154.	1.0	36
27	Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Research, 2013, 23, 1235-1247.	2.4	205
28	Patterning and Regulatory Associations of DNA Methylation Are Mirrored by Histone Modifications in Insects. Genome Biology and Evolution, 2013, 5, 591-598.	1.1	91
29	The Function of Intragenic DNA Methylation: Insights from Insect Epigenomes. Integrative and Comparative Biology, 2013, 53, 319-328.	0.9	96
30	Kin selection, genomics and caste-antagonistic pleiotropy. Biology Letters, 2013, 9, 20130309.	1.0	14
31	Evolution at Two Levels in Fire Ants: The Relationship between Patterns of Gene Expression and Protein Sequence Evolution. Molecular Biology and Evolution, 2013, 30, 263-271.	3.5	46
32	Climbing, falling, and jamming during ant locomotion in confined environments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9746-9751.	3.3	34
33	Genome composition, caste, and molecular evolution in eusocial insects. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E445-E446.	3.3	5
34	Effects of worker size on the dynamics of fire ant tunnel construction. Journal of the Royal Society Interface, 2012, 9, 3312-3322.	1.5	26
35	Effects of Size, Shape, Genotype, and Mating Status on Queen Overwintering Survival in the Social Wasp <i>Vespula maculifrons</i> . Environmental Entomology, 2012, 41, 1612-1620.	0.7	39
36	Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15936-15941.	3.3	148

MICHAEL A D GOODISMAN

#	Article	IF	CITATIONS
37	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2010 – 30 September 2010. Molecular Ecology Resources, 2011, 11, 219-222.	2.2	48
38	DNA methylation in insects: on the brink of the epigenomic era. Insect Molecular Biology, 2011, 20, 553-565.	1.0	211
39	Sib mating without inbreeding in the longhorn crazy ant. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2677-2681.	1.2	78
40	The genome of the fire ant <i>Solenopsis invicta</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5679-5684.	3.3	322
41	Ross H. Crozier (1943–2009). Entomologica Americana, 2010, 116, 92-94.	0.2	1
42	Environmental and genetic influences on queen and worker body size in the social wasp Vespula maculifrons. Insectes Sociaux, 2010, 57, 53-65.	0.7	23
43	Evolutionary variation in gene expression is associated with dimorphism in eusocial vespid wasps. Insect Molecular Biology, 2010, 19, 641-652.	1.0	14
44	Detecting selection on morphological traits in social insect castes: the case of the social wasp Vespula maculifrons. Biological Journal of the Linnean Society, 2010, 101, 93-102.	0.7	11
45	Sociality Is Linked to Rates of Protein Evolution in a Highly Social Insect. Molecular Biology and Evolution, 2010, 27, 497-500.	3.5	50
46	Functional Conservation of DNA Methylation in the Pea Aphid and the Honeybee. Genome Biology and Evolution, 2010, 2, 719-728.	1.1	109
47	Computational approaches for understanding the evolution of DNA methylation in animals. Epigenetics, 2009, 4, 551-556.	1.3	55
48	DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, <i>Apis mellifera</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11206-11211.	3.3	303
49	Resource allocation in a social wasp: effects of breeding system and life cycle on reproductive decisions. Molecular Ecology, 2009, 18, 2908-2920.	2.0	24
50	Nestmate relatedness and population genetic structure of the Australian social crab spider Diaea ergandros (Araneae: Thomisidae). Molecular Ecology, 2008, 11, 2307-2316.	2.0	23
51	Mating Success in the Polyandrous Social Wasp Vespula maculifrons. Ethology, 2008, 114, 340-350.	0.5	16
52	Genetic structure and breeding system in a social wasp and its social parasite. BMC Evolutionary Biology, 2008, 8, 239.	3.2	22
53	Gene expression and the evolution of phenotypic diversity in social wasps. BMC Biology, 2007, 5, 23.	1.7	55
54	Lack of conflict during queen production in the social wasp Vespula maculifrons. Molecular Ecology, 2007, 16, 2589-2595.	2.0	31

4

#	Article	IF	CITATIONS
55	THE SIGNIFICANCE OF MULTIPLE MATING IN THE SOCIAL WASP VESPULA MACULIFRONS. Evolution; International Journal of Organic Evolution, 2007, 61, 2260-2267.	1.1	37
56	Irregular brood patterns and worker reproduction in social wasps. Die Naturwissenschaften, 2007, 94, 1011-1014.	0.6	8
57	Genetic and morphological variation over space and time in the invasive fire ant Solenopsis invicta. Biological Invasions, 2007, 9, 571-584.	1.2	16
58	BREEDING SYSTEM, COLONY STRUCTURE, AND GENETIC DIFFERENTIATION IN THE CAMPONOTUS FESTINATUS SPECIES COMPLEX OF CARPENTER ANTS. Evolution; International Journal of Organic Evolution, 2005, 59, 2185-2199.	1.1	11
59	EVOLUTION OF INSECT METAMORPHOSIS: A MICROARRAY-BASED STUDY OF LARVAL AND ADULT GENE EXPRESSION IN THE ANT CAMPONOTUS FESTINATUS. Evolution; International Journal of Organic Evolution, 2005, 59, 858-870.	1.1	30
60	Evolution of insect metamorphosis: a microarray-based study of larval and adult gene expression in the ant Camponotus festinatus. Evolution; International Journal of Organic Evolution, 2005, 59, 858-70.	1.1	12
61	Breeding system, colony structure, and genetic differentiation in the Camponotus festinatus species complex of carpenter ants. Evolution; International Journal of Organic Evolution, 2005, 59, 2185-99.	1.1	3
62	Clines Maintained by Overdominant Selection in Hybrid Zones. Hereditas, 2004, 134, 161-169.	0.5	4
63	Association between caste and genotype in the termite Mastotermes darwiniensis Froggatt (Isoptera:) Tj ETQq1	1 9.78431	4 <mark>[g</mark> BT /Over
64	POPULATION AND COLONY GENETIC STRUCTURE OF THE PRIMITIVE TERMITE MASTOTERMES DARWINIENSIS. Evolution; International Journal of Organic Evolution, 2002, 56, 70-83.	1.1	77
65	Microsatellite markers in the primitive termite Mastotermes darwiniensis. Molecular Ecology Notes, 2001, 1, 250-251.	1.7	10
66	Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia. Molecular Ecology, 2001, 10, 1423-1432.	2.0	44
67	Reproduction and Recruitment in Perennial Colonies of the Introduced Wasp Vespula germanica. , 2001, 92, 346-349.		17
68	A FORMAL ASSESSMENT OF GENE FLOW AND SELECTION IN THE FIRE ANT SOLENOPSIS INVICTA. Evolution; International Journal of Organic Evolution, 2000, 54, 606-616.	1.1	23
69	Unusual Behavior of Polygyne Fire Ant Queens on Nuptial Flights. Journal of Insect Behavior, 2000, 13, 455-468.	0.4	19
70	Effects of a Single Gene on Worker and Male Body Mass in the Fire Ant Solenopsis invicta (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 1999, 92, 563-570.	1.3	29
71	Queen recruitment in a multiple-queen population of the fire ant Solenopsis invicta. Behavioral Ecology, 1999, 10, 428-435.	1.0	18
72	Queen Dispersal Strategies in the Multipleâ€Queen Form of the Fire AntSolenopsis invicta. American Naturalist, 1999, 153, 660-675.	1.0	91

#	Article	IF	CITATIONS
73	Queen Dispersal Strategies in the Multiple-Queen Form of the Fire Ant Solenopsis invicta. American Naturalist, 1999, 153, 660.	1.0	9
74	A TEST OF QUEEN RECRUITMENT MODELS USING NUCLEAR AND MITOCHONDRIAL MARKERS IN THE FIRE ANT <i>SOLENOPSIS INVICTA</i> . Evolution; International Journal of Organic Evolution, 1998, 52, 1416-1422.	1.1	23
75	CYTONUCLEAR THEORY FOR HAPLODIPLOID SPECIES AND X-LINKED GENES. II. STEPPING-STONE MODELS OF GENE FLOW AND APPLICATION TO A FIRE ANT HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1998, 52, 1423-1440.	1.1	20
76	A Test of Queen Recruitment Models Using Nuclear and Mitochondrial Markers in the Fire Ant Solenopsis invicta. Evolution; International Journal of Organic Evolution, 1998, 52, 1416.	1.1	12
77	Relationship of queen number and queen relatedness in multiple-queen colonies of the fire ant Solenopsis invicta. Ecological Entomology, 1997, 22, 150-157.	1.1	20
78	Cytonuclear Theory for Haplodiploid Species and X-Linked Genes. I. Hardy-Weinberg Dynamics and Continent-Island, Hybrid Zone Models. Genetics, 1997, 147, 321-338.	1.2	30
79	Relationship of queen number and worker size in polygyne colonies of the fire antSolenopsis invicta. Insectes Sociaux, 1996, 43, 303-307.	0.7	24
80	Toward Task Capable Active Matter: Learning to Avoid Clogging in Confined Collectives via Collisions. Frontiers in Physics, 0, 10, .	1.0	3