Luisa Ann DiPietro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Advances in Wound Care, 2021, 10, 436-460.	2.6	9
2	Dermal fibroblast phagocytosis of apoptotic cells: A novel pathway for wound resolution. FASEB Journal, 2021, 35, e21443.	0.2	8
3	Phagocytosis of apoptotic endothelial cells reprograms macrophages in skin wounds. Journal of Immunology and Regenerative Medicine, 2021, 12, 100038.	0.2	6
4	Macrophages in Healing Wounds: Paradoxes and Paradigms. International Journal of Molecular Sciences, 2021, 22, 950.	1.8	44
5	A Role for Low-Density Lipoprotein Receptor-Related Protein 6 in Blood Vessel Regression in Wound Healing. Advances in Wound Care, 2020, 9, 1-8.	2.6	11
6	Evaluating the Endocytosis and Lineage-Specification Properties of Mesenchymal Stem Cell Derived Extracellular Vesicles for Targeted Therapeutic Applications. Frontiers in Pharmacology, 2020, 11, 163.	1.6	21
7	Improvement of full-thickness rat skin wounds by photobiomodulation therapy (PBMT): A dosimetric study. Journal of Photochemistry and Photobiology B: Biology, 2020, 206, 111850.	1.7	11
8	Pigment epitheliumâ€derived factor attenuates angiogenesis and collagen deposition in hypertrophic scars. Wound Repair and Regeneration, 2020, 28, 684-695.	1.5	8
9	LDL induces cholesterol loading and inhibits endothelial proliferation and angiogenesis in Matrigels: correlation with impaired angiogenesis during wound healing. American Journal of Physiology - Cell Physiology, 2020, 318, C762-C776.	2.1	18
10	Site-Specific Expression Pattern of PIWI-Interacting RNA in Skin and Oral Mucosal Wound Healing. International Journal of Molecular Sciences, 2020, 21, 521.	1.8	3
11	Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing. PLoS ONE, 2020, 15, e0231962.	1.1	93
12	Overexpression of the Oral Mucosa-Specific microRNA-31 Promotes Skin Wound Closure. International Journal of Molecular Sciences, 2019, 20, 3679.	1.8	17
13	Predictive Approach Identifies Molecular Targets and Interventions to Restore Angiogenesis in Wounds With Delayed Healing. Frontiers in Physiology, 2019, 10, 636.	1.3	17
14	Cellular Senescence in Diabetic Wounds: When Too Many Retirees Stress the System. Journal of Investigative Dermatology, 2019, 139, 997-999.	0.3	16
15	Differential microRNA profile underlies the divergent healing responses in skin and oral mucosal wounds. Scientific Reports, 2019, 9, 7160.	1.6	30
16	Laser Capture Microdissection of Epithelium from aÂWound Healing Model for MicroRNA Analysis. Methods in Molecular Biology, 2018, 1733, 225-237.	0.4	5
17	The importance of targeting inflammation in skin regeneration. , 2018, , 255-275.		0
18	Pore Diameter of Mesoporous Silica Modulates Oxidation of H ₂ O ₂ -Sensing Chromophore in a Porous Matrix. Langmuir, 2018, 34, 11242-11252.	1.6	6

#	Article	IF	CITATIONS
19	Pigment Epithelium-Derived Factor (PEDF) as a Regulator of Wound Angiogenesis. Scientific Reports, 2018, 8, 11142.	1.6	38
20	Computational analysis identifies putative prognostic biomarkers of pathological scarring in skin wounds. Journal of Translational Medicine, 2018, 16, 32.	1.8	9
21	Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization. Journal of the Royal Society Interface, 2017, 14, 20160959.	1.5	17
22	Wound healing in Macâ€1 deficient mice. Wound Repair and Regeneration, 2017, 25, 366-376.	1.5	4
23	Predictive Analysis of Mechanistic Triggers and Mitigation Strategies for Pathological Scarring in Skin Wounds. Journal of Immunology, 2017, 198, 832-841.	0.4	18
24	Toll-Like Receptor Function in Acute Wounds. Advances in Wound Care, 2017, 6, 344-355.	2.6	66
25	Impaired Wound Repair and Delayed Angiogenesis. , 2017, , 1003-1015.		2
26	Diabetes and Wound Angiogenesis. International Journal of Molecular Sciences, 2017, 18, 1419.	1.8	549
27	MicroCT angiography detects vascular formation and regression in skin wound healing. Microvascular Research, 2016, 106, 57-66.	1.1	15
28	Angiogenesis and wound repair: when enough is enough. Journal of Leukocyte Biology, 2016, 100, 979-984.	1.5	396
29	Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis. PLoS ONE, 2016, 11, e0146451.	1.1	36
30	The murine excisional wound model: Contraction revisited. Wound Repair and Regeneration, 2015, 23, 874-877.	1.5	119
31	<i>Pseudomonas aeruginosa</i> uses T3SS to inhibit diabetic wound healing. Wound Repair and Regeneration, 2015, 23, 557-564.	1.5	42
32	Pigment epithelium-derived factor as a multifunctional regulator of wound healing. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H812-H826.	1.5	48
33	Impaired Wound Repair and Delayed Angiogenesis. , 2015, , 1-13.		3
34	Blockade of Mast Cell Activation Reduces Cutaneous Scar Formation. PLoS ONE, 2014, 9, e85226.	1.1	73
35	Pro-Inflammatory Chemokine CCL2 (MCP-1) Promotes Healing in Diabetic Wounds by Restoring the Macrophage Response. PLoS ONE, 2014, 9, e91574.	1.1	192
36	Differential Apoptosis in Mucosal and Dermal Wound Healing. Advances in Wound Care, 2014, 3, 751-761.	2.6	24

#	Article	IF	CITATIONS
37	Production and function of pigment epitheliumâ€derived factor in isolated skin keratinocytes. Experimental Dermatology, 2014, 23, 436-438.	1.4	15
38	Absence of <scp>CD</scp> 4 or <scp>CD</scp> 8 lymphocytes changes infiltration of inflammatory cells and profiles of cytokine expression in skin wounds, but does not impair healing. Experimental Dermatology, 2014, 23, 189-194.	1.4	59
39	Intrinsic Differences between Oral and Skin Keratinocytes. PLoS ONE, 2014, 9, e101480.	1.1	95
40	The candidate tumor suppressor gene Ecrg4 as a wound terminating factor in cutaneous injury. Archives of Dermatological Research, 2013, 305, 141-149.	1.1	28
41	Activated mesenchymal stem cells increase wound tensile strength in aged mouse model via macrophages. Journal of Surgical Research, 2013, 181, 20-24.	0.8	36
42	Apoptosis and angiogenesis: an evolving mechanism for fibrosis. FASEB Journal, 2013, 27, 3893-3901.	0.2	130
43	Toll-Like Receptor 4 Has an Essential Role in Early Skin Wound Healing. Journal of Investigative Dermatology, 2013, 133, 258-267.	0.3	140
44	Angiogenesis and scar formation in healing wounds. Current Opinion in Rheumatology, 2013, 25, 87-91.	2.0	116
45	Microfluidic wound bandage: Localized oxygen modulation of collagen maturation. Wound Repair and Regeneration, 2013, 21, 226-234.	1.5	26
46	Therapeutic Approaches to the Regulation of Wound Angiogenesis. Advances in Wound Care, 2013, 2, 81-86.	2.6	56
47	Exercise Speeds Cutaneous Wound Healing in High-Fat Diet-Induced Obese Mice. Medicine and Science in Sports and Exercise, 2012, 44, 1846-1854.	0.2	19
48	Mast Cells Contribute to Scar Formation during Fetal Wound Healing. Journal of Investigative Dermatology, 2012, 132, 458-465.	0.3	143
49	Complex Roles for VEGF in Dermal Wound Healing. Journal of Investigative Dermatology, 2012, 132, 493-494.	0.3	31
50	Mechanisms of Vessel Regression: Toward an Understanding of the Resolution of Angiogenesis. Current Topics in Microbiology and Immunology, 2012, 367, 3-32.	0.7	72
51	Inflammation and wound healing. Endodontic Topics, 2011, 24, 26-38.	0.5	29
52	LUISA A. DIPIETRO, DDS, PHD, Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA. Endodontic Topics, 2011, 24, 146-146.	0.5	0
53	Inflammation and wound healing: the role of the macrophage. Expert Reviews in Molecular Medicine, 2011, 13, e23.	1.6	1,160
54	Fibroblast Function and Wound Breaking Strength Is Impaired by Acute Ethanol Intoxication. Alcoholism: Clinical and Experimental Research, 2011, 35, 83-90.	1.4	43

#	Article	IF	CITATIONS
55	Epithelial Regulation of Mesenchymal Tissue Behavior. Journal of Investigative Dermatology, 2011, 131, 892-899.	0.3	34
56	Sprouty2 downregulates angiogenesis during mouse skin wound healing. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H459-H467.	1.5	52
57	Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics, 2010, 11, 471.	1.2	160
58	TLR2 expression and signaling-dependent inflammation impair wound healing in diabetic mice. Laboratory Investigation, 2010, 90, 1628-1636.	1.7	64
59	Impaired Wound Repair and Delayed Angiogenesis. , 2010, , 897-907.		8
60	Brewing complications: the effect of acute ethanol exposure on wound healing. Journal of Leukocyte Biology, 2009, 86, 1125-1134.	1.5	25
61	Norepinephrine-Mediated Suppression of Phagocytosis by Wound Neutrophils. Journal of Surgical Research, 2009, 152, 311-318.	0.8	26
62	Selective and Specific Macrophage Ablation Is Detrimental to Wound Healing in Mice. American Journal of Pathology, 2009, 175, 2454-2462.	1.9	528
63	Regulation of scar formation by vascular endothelial growth factor. Laboratory Investigation, 2008, 88, 579-590.	1.7	261
64	Siteâ€specific production of TGFâ€Î² in oral mucosal and cutaneous wounds. Wound Repair and Regeneration, 2008, 16, 80-86.	1.5	148
65	Acute ethanol exposure disrupts VEGF receptor cell signaling in endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H174-H184.	1.5	53
66	Exercise accelerates cutaneous wound healing and decreases wound inflammation in aged mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R179-R184.	0.9	125
67	Mechanical unloading impairs keratinocyte migration and angiogenesis during cutaneous wound healing. Journal of Applied Physiology, 2008, 104, 1295-1303.	1.2	37
68	Effects of Acute Ethanol Exposure on the Early Inflammatory Response After Excisional Injury. Alcoholism: Clinical and Experimental Research, 2007, 31, 317-323.	1.4	49
69	Matrix Proteolytic Activity During Wound Healing: Modulation by Acute Ethanol Exposure. Alcoholism: Clinical and Experimental Research, 2007, 31, 1045-1052.	1.4	21
70	Norepinephrine suppresses wound macrophage phagocytic efficiency through alpha- and beta-adrenoreceptor dependent pathways. Surgery, 2007, 142, 170-179.	1.0	61
71	Exogenous Pro-Angiogenic Stimuli Cannot Prevent Physiologic Vessel Regression. Journal of Surgical Research, 2006, 135, 218-225.	0.8	24
72	Norepinephrine Modulates the Inflammatory and Proliferative Phases of Wound Healing. Journal of Trauma, 2006, 60, 736-744.	2.3	124

#	Article	IF	CITATIONS
73	Diminished Induction of Skin Fibrosis in Mice with MCP-1 Deficiency. Journal of Investigative Dermatology, 2006, 126, 1900-1908.	0.3	101
74	Lessons Learned from Psoriatic Plaques Concerning Mechanisms of Tissue Repair, Remodeling, and Inflammation. Journal of Investigative Dermatology Symposium Proceedings, 2006, 11, 16-29.	0.8	68
75	Acute ethanol exposure impairs angiogenesis and the proliferative phase of wound healing. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1084-H1090.	1.5	81
76	Inflammation in surgical wound healing: Friend or foe?. Surgery, 2005, 137, 571-573.	1.0	81
77	The effect of MCP-1 depletion on chemokine and chemokine-related gene expression: evidence for a complex network in acute inflammation. Cytokine, 2005, 30, 64-71.	1.4	43
78	Novel Function for Vascular Endothelial Growth Factor Receptor-1 on Epidermal Keratinocytes. American Journal of Pathology, 2005, 167, 1257-1266.	1.9	114
79	Neutrophil function in the healing wound: adding insult to injury?. Thrombosis and Haemostasis, 2004, 92, 275-280.	1.8	179
80	Aging and Wound Healing. World Journal of Surgery, 2004, 28, 321-326.	0.8	807
81	Targeted Disruption of TGF-β/Smad3 Signaling Modulates Skin Fibrosis in a Mouse Model of Scleroderma. American Journal of Pathology, 2004, 165, 203-217.	1.9	207
82	Mast cells modulate the inflammatory but not the proliferative response in healing wounds. Wound Repair and Regeneration, 2003, 11, 46-54.	1.5	146
83	Elevated monocyte chemoattractant proteinâ€1 levels following thermal injury precede monocyte recruitment to the wound site and are controlled, in part, by tumor necrosis factorâ€Î±. Wound Repair and Regeneration, 2003, 11, 110-119.	1.5	39
84	Quantifi cation of Wound Angiogenesis. , 2003, 78, 319-328.		3
85	Accelerated wound closure in neutrophil-depleted mice. Journal of Leukocyte Biology, 2003, 73, 448-455.	1.5	427
86	The Effect of Thrombocytopenia on Dermal Wound Healing. Journal of Investigative Dermatology, 2003, 120, 1130-1137.	0.3	93
87	Differential Angiogenic and Proliferative Activity of Surgical and Burn Wound Fluids. Journal of Trauma, 2003, 54, 1205-1210.	2.3	18
88	The Effect of Thrombocytopenia on Dermal Wound Healing. Journal of Investigative Dermatology, 2003, 120, 1130-1137.	0.3	20
89	Neuropilin-1 Participates in Wound Angiogenesis. American Journal of Pathology, 2002, 160, 289-296.	1.9	51
90	The Effect of Sepsis on Wound Healing. Journal of Surgical Research, 2002, 102, 193-197.	0.8	602

#	Article	IF	CITATIONS
91	Wound Healing in MIP-1αâ^'/â^' and MCP-1â^'/â^' Mice. American Journal of Pathology, 2001, 159, 457-463.	1.9	289
92	Modulation of macrophage recruitment into wounds by monocyte chemoattractant protein-1. Wound Repair and Regeneration, 2001, 9, 28-33.	1.5	120
93	Age-Related Alterations in the Inflammatory Response to Dermal Injury. Journal of Investigative Dermatology, 2001, 117, 1027-1035.	0.3	331
94	Heparin and heparan sulphate protect basic fibroblast growth factor from non-enzymic glycosylation. Biochemical Journal, 1999, 338, 637-642.	1.7	46
95	Angiogenic Mediators in Wound Healing. , 1998, , 121-128.		3
96	Basic fibroblast growth factor mediates angiogenic activity in early surgical wounds. Surgery, 1996, 119, 457-465.	1.0	119
97	The Role of Thrombospondin in Angiogenesis. , 1996, , 105-113.		1
98	Fibrogenic cytokines and connective tissue production. FASEB Journal, 1994, 8, 854-861.	0.2	389
99	Downregulation of Endothelial Cell Thrombospondin 1 Enhances in vitro Angiogenesis. Journal of Vascular Research, 1994, 31, 178-185.	0.6	98