Pilar Castro-Diez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713500/publications.pdf

Version: 2024-02-01

91 papers

5,641 citations

35 h-index 72 g-index

91 all docs 91 docs citations

times ranked

91

7445 citing authors

#	Article	IF	CITATIONS
1	Biotic, abiotic, and anthropogenic drivers of demographic performance of non-native Eucalyptus and Pinus species in forested areas of Spain. Forest Ecology and Management, 2022, 510, 120111.	3.2	3
2	Effects of widespread non-native trees on regulating ecosystem services. Science of the Total Environment, 2021, 778, 146141.	8.0	28
3	Changes in community functional structure and ecosystem properties along an invasion gradient of <i>Ligustrum lucidum</i> . Journal of Vegetation Science, 2021, 32, e13098.	2.2	5
4	Effects of leaf litter extracts from four tree species on aquatic invertebrates: an ecotoxicological risk assessment approach. Aquatic Ecology, 2020, 54, 1155-1168.	1.5	3
5	A Global Review of Ligustrum Lucidum (OLEACEAE) Invasion. Botanical Review, The, 2020, 86, 93-118.	3.9	25
6	Allometric coâ€variation of xylem and stomata across diverse woody seedlings. Plant, Cell and Environment, 2020, 43, 2301-2310.	5.7	13
7	Integrating climate, water chemistry and propagule pressure indicators into aquatic species distribution models. Ecological Indicators, 2020, 112, 106060.	6.3	13
8	Combined effects of land-use intensification and plant invasion on native communities. Oecologia, 2020, 192, 823-836.	2.0	6
9	Assessing the drivers and the recruitment potential of Eucalyptus globulus in the Iberian Peninsula. Forest Ecology and Management, 2020, 466, 118147.	3.2	12
10	Alien Plant Species: Environmental Risks in Agricultural and Agro-Forest Landscapes Under Climate Change. Climate Change Management, 2019, , 215-234.	0.8	2
11	Effects of litter mixing on litter decomposition and soil properties along simulated invasion gradients of non-native trees. Plant and Soil, 2019, 442, 79-96.	3.7	13
12	Functional and phylogenetic consequences of plant invasion for coastal native communities. Journal of Vegetation Science, 2019, 30, 510-520.	2.2	25
13	Global effects of nonâ€native tree species on multiple ecosystem services. Biological Reviews, 2019, 94, 1477-1501.	10.4	158
14	Convergent xylem widening among organs across diverse woody seedlings. New Phytologist, 2019, 222, 1873-1882.	7.3	11
15	The New Zealand mud snail Potamopyrgus antipodarum (J.E. Gray, 1853) (Tateidae, Mollusca) in the Iberian Peninsula: temporal patterns of distribution. BioInvasions Records, 2019, 8, 287-300.	1.1	7
16	An indicator-based approach to analyse the effects of non-native tree species on multiple cultural ecosystem services. Ecological Indicators, 2018, 85, 48-56.	6.3	42
17	Current and future conflicts between eucalypt plantations and high biodiversity areas in the Iberian Peninsula. Journal for Nature Conservation, 2018, 45, 107-117.	1.8	29
18	Pollution Assessment of the BiobÃo River (Chile): Prioritization of Substances of Concern Under an Ecotoxicological Approach. Environmental Management, 2017, 59, 856-869.	2.7	8

#	Article	IF	Citations
19	Alteration of Nitrogen Cycling as a Result of Invasion. , 2017, , 49-62.		4
20	Allelopathic potentials of exotic invasive and native trees over coexisting understory species: the soil as modulator. Plant Ecology, 2017, 218, 579-594.	1.6	18
21	Effects of non-native riparian plants in riparian and fluvial ecosystems: a review for the Iberian Peninsula., 2017,, 525-541.		13
22	Potential Germination Success of Exotic and Native Trees Coexisting in Central Spain Riparian Forests. International Journal of Ecology, 2016, 2016, 1-10.	0.8	5
23	Linking the impacts of plant invasion on community functional structure and ecosystem properties. Journal of Vegetation Science, 2016, 27, 1233-1242.	2.2	73
24	A multi-scale approach to identify invasion drivers and invaders' future dynamics. Biological Invasions, 2016, 18, 411-426.	2.4	47
25	Impacts of the alien trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. on soil nutrients and microbial communities. Soil Biology and Biochemistry, 2016, 96, 65-73.	8.8	29
26	Survival of an invasive aquatic snail to overland translocation in non-aquatic media: Implications for spreading. Limnologica, 2016, 57, 60-65.	1.5	8
27	Comparing the Sexual Reproductive Success of Two Exotic Trees Invading Spanish Riparian Forests vs. a Native Reference. PLoS ONE, 2016, 11, e0160831.	2.5	5
28	Do the invasive trees, Ailanthus altissima and Robinia pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in Central Spain?. Plant and Soil, 2015, 396, 311-324.	3.7	31
29	Contrasting secondary growth and water use efficiency patterns in native and exotic trees co-occurring in inner Spain riparian forests. Forest Systems, 2015, 24, 017.	0.3	12
30	Can the Life-History Strategy Explain the Success of the Exotic Trees Ailanthus altissima and Robinia pseudoacacia in Iberian Floodplain Forests?. PLoS ONE, 2014, 9, e100254.	2.5	26
31	Lack of superiority of invasive over co-occurring native riparian tree seedling species. Biological Invasions, 2014, 16, 269-281.	2.4	15
32	What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A metaâ€analysis. Ecology Letters, 2014, 17, 1-12.	6.4	194
33	Predicting climate change impacts on native and invasive tree species using radial growth and twenty-first century climate scenarios. European Journal of Forest Research, 2014, 133, 1073-1086.	2.5	22
34	Does stream structure affect dispersal by water? A case study of the invasive tree Ailanthus altissima in Spain. Management of Biological Invasions, 2014, 5, 179-186.	1.2	9
35	Las invasiones biol $ ilde{A}^3$ gicas y su impacto en los ecosistemas. Ecosistemas, 2014, 24, 1-3.	0.4	2
36	Analysis of the riparian habitat invasion by three tree exotic species in Spain. Ecosistemas, 2014, 24, 18-28.	0.4	4

#	Article	IF	CITATIONS
37	El caracol acuático neozelandés del cieno (Potamopyrgus antipodarum): impactos ecológicos y distribución de esta especie exótica en la penÃnsula ibÁ©rica. Ecosistemas, 2014, 24, 52-58.	0.4	2
38	Integration of ecological impacts by invasive exotic plants: a methodological approach. Ecosistemas, 2014, 24, 12-17.	0.4	1
39	Differences in nitrogen use strategies between native and exotic tree species: predicting impacts on invaded ecosystems. Plant and Soil, 2013, 363, 319-329.	3.7	29
40	The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. New Phytologist, 2012, 195, 912-922.	7.3	82
41	Functional traits analyses: Scaling-up from species to community level. Plant and Soil, 2012, 357, 9-12.	3.7	16
42	The exotic aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca): state of the art of a worldwide invasion. Aquatic Sciences, 2012, 74, 375-383.	1.5	70
43	Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in <i>Populus tremula</i> function. Plant, Cell and Environment, 2012, 35, 839-856.	5.7	203
44	Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant and Soil, 2012, 350, 179-191.	3.7	91
45	Is leaf dry matter content a better predictor of soil fertility than specific leaf area?. Annals of Botany, 2011, 108, 1337-1345.	2.9	219
46	Assessing the influence of environmental and human factors on native and exotic species richness. Acta Oecologica, 2011, 37, 51-57.	1.1	14
47	Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology, 2011, 25, 1248-1259.	3.6	168
48	Predicting invasiveness of Australian acacias on the basis of their native climatic affinities, life history traits and human use. Diversity and Distributions, 2011, 17, 934-945.	4.1	96
49	Predicting Acacia invasive success in South Africa on the basis of functional traits, native climatic niche and human use. Biodiversity and Conservation, 2011, 20, 2729-2743.	2.6	12
50	Relationships of climate, residence time, and biogeographical origin with the range sizes and species richness patterns of exotic plants in Great Britain. Plant Ecology, 2011, 212, 1901-1911.	1.6	15
51	Establishment Success of Coexisting Native and Exotic Trees Under an Experimental Gradient of Irradiance and Soil Moisture. Environmental Management, 2011, 48, 764-773.	2.7	30
52	Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia, 2010, 162, 781-790.	2.0	77
53	Summer water stress and shade alter bud size and budburst date in three mediterranean Quercus species. Trees - Structure and Function, 2010, 24, 89-97.	1.9	24
54	Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecological Research, 2010, 25, 647-653.	1,5	46

#	Article	IF	CITATIONS
55	Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?. Annals of Botany, 2010, 105, 573-584.	2.9	121
56	Phenology of Mediterranean woody plants from NE Spain: Synchrony, seasonality, and relationships among phenophases. Flora: Morphology, Distribution, Functional Ecology of Plants, 2010, 205, 190-199.	1.2	34
57	Seasonal carbon storage and growth in Mediterranean tree seedlings under different water conditions. Tree Physiology, 2009, 29, 1105-1116.	3.1	39
58	Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain. Biological Invasions, 2009, 11, 1973-1986.	2.4	77
59	Effects of drought and shade on nitrogen cycling in the leaves and canopy of Mediterranean Quercus seedlings. Plant and Soil, 2009, 316, 45-56.	3.7	16
60	Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two coâ€occurring Mediterranean oaks. Plant Biology, 2009, 11, 142-151.	3.8	54
61	Different flowering phenology of alien invasive species in Spain: evidence for the use of an empty temporal niche?. Plant Biology, 2009, 11, 803-811.	3.8	71
62	Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems. Annals of Botany, 2009, 103, 485-494.	2.9	87
63	What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae,) Tj ${\sf ETQq1}$	1 _{2.0} 78431	 4_rgBT O∨ 175
64	Environmental and developmental controls on specific leaf area are little modified by leaf allometry. Functional Ecology, 2008, 22, 565-576.	3.6	68
65	Effects of moderate shade and irrigation with eutrophicated water on the nitrogen economy of Mediterranean oak seedlings. Flora: Morphology, Distribution, Functional Ecology of Plants, 2008, 203, 243-253.	1.2	3
66	Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes. Tree Physiology, 2007, 27, 1011-1018.	3.1	22
67	Growth versus storage: responses of Mediterranean oak seedlings to changes in nutrient and water availabilities. Annals of Forest Science, 2007, 64, 201-210.	2.0	37
68	Costs of Reproduction as Related to the Timing of Phenological Phases in the Dioecious Shrub Pistacia lentiscus L Plant Biology, 2006, 8, 103-111.	3.8	20
69	Interactive effects of shade and irrigation on the performance of seedlings of three Mediterranean Quercus species. Tree Physiology, 2006, 26, 389-400.	3.1	34
70	Environmental Constraints on Phenology and Internal Nutrient Cycling in the Mediterranean Winterâ€Deciduous Shrub Amelanchier ovalis Medicus. Plant Biology, 2005, 7, 182-189.	3.8	19
71	Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytologist, 2005, 168, 167-178.	7. 3	94
72	A functional method for classifying European grasslands for use in joint ecological and economic studies. Basic and Applied Ecology, 2005, 6, 119-131.	2.7	24

#	Article	IF	Citations
73	Does the Gradualness of Leaf Shedding Govern Nutrient Resorption from Senescing Leaves in Mediterranean Woody Plants?. Plant and Soil, 2005, 278, 303-313.	3.7	31
74	How much will it cost to save grassland diversity?. Biological Conservation, 2005, 122, 263-273.	4.1	76
75	Phenological comparison between two co-occurring Mediterranean woody species differing in growth form. Flora: Morphology, Distribution, Functional Ecology of Plants, 2005, 200, 88-95.	1.2	23
76	The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 2004, 15, 295-304.	2,2	1,198
77	Title is missing!. Plant Ecology, 2003, 166, 117-129.	1.6	49
78	Simulated effects of herb competition on planted <i>Quercus faginea</i> seedlings in Mediterranean abandoned cropland. Applied Vegetation Science, 2003, 6, 213-222.	1.9	11
79	Functional traits of woody plants: correspondence of species rankings between field adults and laboratoryâ€grown seedlings?. Journal of Vegetation Science, 2003, 14, 311-322.	2.2	158
80	Simulated effects of herb competition on planted Quercus faginea seedlings in Mediterranean abandoned cropland. Applied Vegetation Science, 2003, 6, 213.	1.9	24
81	Title is missing!. , 1998, 139, 103-112.		104
82	Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia, 1998, 116, 57-66.	2.0	107
83	Leaf morphology, leaf chemical composition and stem xylem characteristics in two Pistacia (Anacardiaceae) species along a climatic gradient. Flora: Morphology, Distribution, Functional Ecology of Plants, 1998, 193, 195-202.	1.2	46
84	Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia, 1997, 111, 460.	2.0	148
85	Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees - Structure and Function, 1997, 12, 90-96.	1.9	76
86	Leaf morphology and leaf chemical composition in three. Trees - Structure and Function, 1997, 11, 127.	1.9	55
87	Stem xylem features in three. Trees - Structure and Function, 1997, 12, 90.	1.9	69
88	Seedling Growth, Allocation and Leaf Attributes in a Wide Range of Woody Plant Species and Types. Journal of Ecology, 1996, 84, 755.	4.0	327
89	Tolerance to air exposure of the New Zealand mudsnail Potamopyrgus antipodarum (Hydrobiidae,) Tj ETQq1 1 0.	.784314 rg 1.0	gBT /Overlock
90	Management of invasive alien species in Spain: A bibliometric review. NeoBiota, 0, 70, 123-150.	1.0	7

 #	Article	IF	CITATIONS
91	Functional traits and propagule pressure explain changes in the distribution and demography of nonâ€native trees in spain. Journal of Vegetation Science, 0, , .	2.2	0