
Weisheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713486/publications.pdf Version: 2024-02-01

WEISHENC YANC

#	Article	IF	CITATIONS
1	High wet-strength, thermally stable and transparent TEMPO-oxidized cellulose nanofibril film via cross-linking with poly-amide epichlorohydrin resin. RSC Advances, 2017, 7, 31567-31573.	3.6	69
2	Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system. Nature Energy, 2020, 5, 759-767.	39.5	65
3	Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid. Waste Management, 2021, 135, 267-274.	7.4	62
4	Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Advances, 2017, 7, 10463-10468.	3.6	38
5	Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers. Nanomaterials, 2019, 9, 107.	4.1	38
6	Highly transparent and thermally stable cellulose nanofibril films functionalized with colored metal ions for ultraviolet blocking activities. Carbohydrate Polymers, 2019, 213, 10-16.	10.2	37
7	Thermally-induced cellulose nanofibril films with near-complete ultraviolet-blocking and improved water resistance. Carbohydrate Polymers, 2019, 223, 115050.	10.2	35
8	Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. International Journal of Biological Macromolecules, 2021, 166, 1312-1319.	7.5	34
9	Highly Efficient Lignin Depolymerization via Effective Inhibition of Condensation during Polyoxometalate-Mediated Oxidation. Energy & Fuels, 2019, 33, 6483-6490.	5.1	32
10	Easily recoverable and reusable <i>p</i> -toluenesulfonic acid for faster hydrolysis of waste polyethylene terephthalate. Green Chemistry, 2022, 24, 1362-1372.	9.0	32
11	Morphology control for tunable optical properties of cellulose nanofibrils films. Cellulose, 2018, 25, 5909-5918.	4.9	26
12	Direct Valorization of Lignocellulosic Biomass into Value-Added Chemicals by Polyoxometalate Catalyzed Oxidation under Mild Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 22996-23004.	3.7	26
13	Efficient Biomass Fuel Cell Powered by Sugar with Photo―and Thermalâ€Catalysis by Solar Irradiation. ChemSusChem, 2018, 11, 2229-2238.	6.8	19
14	Aerogel Perfusion-Prepared h-BN/CNF Composite Film with Multiple Thermally Conductive Pathways and High Thermal Conductivity. Nanomaterials, 2019, 9, 1051.	4.1	19
15	Synthetic polymers based on lignin-derived aromatic monomers for high-performance energy-storage materials. Journal of Materials Chemistry A, 2020, 8, 24065-24074.	10.3	13
16	Value-added utilization of lignin-derived aromatic oligomers as renewable charge-storage materials. Industrial Crops and Products, 2021, 171, 113848.	5.2	8
17	Efficient valorization of woody biomass using two-step oxidation toward multipurpose fractionation. Industrial Crops and Products, 2021, 167, 113509.	5.2	4