
Steven Kleiboeker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The small 11kDa nonstructural protein of human parvovirus B19 plays a key role in inducing apoptosis during B19 virus infection of primary erythroid progenitor cells. Blood, 2010, 115, 1070-1080.	1.4	68
2	Parvovirus B19 Infection of Human Primary Erythroid Progenitor Cells Triggers ATR-Chk1 Signaling, Which Promotes B19 Virus Replication. Journal of Virology, 2011, 85, 8046-8055.	3.4	64
3	Block to the Production of Full-Length B19 Virus Transcripts by Internal Polyadenylation Is Overcome by Replication of the Viral Genome. Journal of Virology, 2008, 82, 9951-9963.	3.4	62
4	Role of Erythropoietin Receptor Signaling in Parvovirus B19 Replication in Human Erythroid Progenitor Cells. Journal of Virology, 2010, 84, 12385-12396.	3.4	62
5	Productive Parvovirus B19 Infection of Primary Human Erythroid Progenitor Cells at Hypoxia Is Regulated by STAT5A and MEK Signaling but not HIFα. PLoS Pathogens, 2011, 7, e1002088.	4.7	62
6	Human Parvovirus B19 Infection Causes Cell Cycle Arrest of Human Erythroid Progenitors at Late S Phase That Favors Viral DNA Replication. Journal of Virology, 2013, 87, 12766-12775.	3.4	55
7	Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathogens, 2017, 13, e1006266.	4.7	46
8	Human Parvovirus B19 DNA Replication Induces a DNA Damage Response That Is Dispensable for Cell Cycle Arrest at Phase G ₂ /M. Journal of Virology, 2012, 86, 10748-10758.	3.4	42
9	Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication. Journal of Virology, 2018, 92, .	3.4	34
10	Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex. PLoS Pathogens, 2017, 13, e1006370.	4.7	26
11	Endonuclease Activity Inhibition of the NS1 Protein of Parvovirus B19 as a Novel Target for Antiviral Drug Development. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	21
12	RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication. Journal of Virology, 2018, 92, .	3.4	17
13	RNA Binding Motif Protein RBM45 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19 through Binding to Novel Intron Splicing Enhancers. MBio, 2020, 11, .	4.1	14
14	The 11-Kilodalton Nonstructural Protein of Human Parvovirus B19 Facilitates Viral DNA Replication by Interacting with Grb2 through Its Proline-Rich Motifs. Journal of Virology, 2019, 93, .	3.4	9
15	The N-Terminal 5-68 Amino Acids Domain of the Minor Capsid Protein VP1 of Human Parvovirus B19 Enters Human Erythroid Progenitors and Inhibits B19 Infection. Journal of Virology, 2021, 95, .	3.4	9
16	High-Throughput Screening Identifies Inhibitors for Parvovirus B19 Infection of Human Erythroid Progenitors. Journal of Virology, 2022, 96, JVI0132621.	3.4	8