
Kimberly Hamad-Schifferli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4712457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 and approaches for a testing and diagnostic strategy. Journal of Materials Chemistry B, 2021, 9, 8157-8173.	2.9	4
2	Biogenic, hybrid and synthetic vesicles. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129779.	1.1	1
3	Local development of nanotechnology-based diagnostics. Nature Nanotechnology, 2021, 16, 484-486.	15.6	12
4	Developing a Paper-Based Antigen Assay to Differentiate between Coronaviruses and SARS-CoV-2 Spike Variants. Analytical Chemistry, 2021, 93, 7825-7832.	3.2	26
5	Repurposing Old Antibodies for New Diseases by Exploiting Cross-Reactivity and Multicolored Nanoparticles. ACS Nano, 2020, 14, 6626-6635.	7.3	19
6	Optimization of paper-based nanoparticle immunoassays for direct detection of the bacterial pathogen <i>V. parahaemolyticus</i> in oyster hemolymph. Analytical Methods, 2020, 12, 3056-3063.	1.3	9
7	The Immunoprobe Aggregation State is Central to Dipstick Immunoassay Performance. ACS Applied Materials & Interfaces, 2020, 12, 34620-34629.	4.0	15
8	Distributed Biological Foundries for Global Health. Advanced Healthcare Materials, 2019, 8, e1900184.	3.9	11
9	Designing Paper-Based Immunoassays for Biomedical Applications. Sensors, 2019, 19, 554.	2.1	86
10	Detection of resistance protein A (MxA) in paper-based immunoassays with surface enhanced Raman spectroscopy with AuAg nanoshells. Nanoscale, 2019, 11, 10819-10827.	2.8	26
11	PERSIA for Direct Fluorescence Measurements of Transcription, Translation, and Enzyme Activity in Cell-Free Systems. ACS Synthetic Biology, 2019, 8, 1010-1025.	1.9	16
12	Protease Degradation of Protein Coronas and Its Impact on Cancer Cells and Drug Payload Release. ACS Applied Materials & Interfaces, 2019, 11, 14588-14596.	4.0	15
13	Physical Properties of Biomolecules at the Nanomaterial Interface. Journal of Physical Chemistry B, 2018, 122, 2827-2840.	1.2	53
14	Reporter Selection for Nanotags in Multiplexed Surface Enhanced Raman Spectroscopy Assays. ACS Omega, 2018, 3, 10733-10742.	1.6	43
15	Ampli: A Construction Set for Paperfluidic Systems. Advanced Healthcare Materials, 2018, 7, e1800104.	3.9	14
16	A comparison of nanoparticle-antibody conjugation strategies in sandwich immunoassays. Journal of Immunoassay and Immunochemistry, 2017, 38, 355-377.	0.5	41
17	Challenges of the Nano–Bio Interface in Lateral Flow and Dipstick Immunoassays. Trends in Biotechnology, 2017, 35, 1169-1180.	4.9	89
18	Design of SERS nanotags for multiplexed lateral flow immunoassays. Molecular Systems Design and Engineering, 2017, 2, 401-409.	1.7	32

#	Article	IF	CITATIONS
19	Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Science Translational Medicine, 2017, 9, .	5.8	148
20	Surface-Enhanced Raman Spectroscopy-Based Sandwich Immunoassays for Multiplexed Detection of Zika and Dengue Viral Biomarkers. ACS Infectious Diseases, 2017, 3, 767-776.	1.8	134
21	Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics. Science China Chemistry, 2017, 60, 1219-1229.	4.2	49
22	Effect of the Protein Corona on Antibody–Antigen Binding in Nanoparticle Sandwich Immunoassays. Bioconjugate Chemistry, 2017, 28, 230-238.	1.8	58
23	In situ microfluidic SERS assay for monitoring enzymatic breakdown of organophosphates. Nanoscale, 2015, 7, 11013-11023.	2.8	8
24	Exploiting the novel properties of protein coronas: emerging applications in nanomedicine. Nanomedicine, 2015, 10, 1663-1674.	1.7	68
25	Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab on A Chip, 2015, 15, 1638-1641.	3.1	269
26	Extinction Coefficient of Gold Nanostars. Journal of Physical Chemistry C, 2015, 119, 17408-17415.	1.5	118
27	Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates. Journal of Colloid and Interface Science, 2014, 414, 73-81.	5.0	33
28	Protein Coronas on Gold Nanorods Passivated with Amphiphilic Ligands Affect Cytotoxicity and Cellular Response to Penicillin/Streptomycin. ACS Nano, 2014, 8, 4608-4620.	7.3	55
29	Optimizing the Properties of the Protein Corona Surrounding Nanoparticles for Tuning Payload Release. ACS Nano, 2013, 7, 10066-10074.	7.3	121
30	Nanomechanics of surface DNA switches probed by captive contact angle. Journal of Colloid and Interface Science, 2013, 402, 334-339.	5.0	17
31	Surface Composition Tuning of Au–Pt Bimetallic Nanoparticles for Enhanced Carbon Monoxide and Methanol Electro-oxidation. Journal of the American Chemical Society, 2013, 135, 7985-7991.	6.6	266
32	Selective Light-Triggered Release of DNA from Gold Nanorods Switches Blood Clotting On and Off. PLoS ONE, 2013, 8, e68511.	1.1	29
33	Exploiting the Protein Corona around Gold Nanorods for Loading and Triggered Release. ACS Nano, 2012, 6, 6730-6740.	7.3	170
34	Engineering the Interface between Glucose Oxidase and Nanoparticles. Langmuir, 2012, 28, 5190-5200.	1.6	42
35	Stability of Gold Nanorods Passivated with Amphiphilic Ligands. Langmuir, 2012, 28, 8834-8844.	1.6	47
36	Effect of Gold Nanorod Surface Chemistry on Cellular Response. ACS Nano, 2011, 5, 2870-2879.	7.3	171

3

#	Article	IF	CITATIONS
37	Quantifying the Nanomachinery of the Nanoparticle–Biomolecule Interface. Small, 2011, 7, 2477-2484.	5.2	38
38	Nanoscale interfaces to biology. Current Opinion in Chemical Biology, 2010, 14, 616-622.	2.8	69
39	Effective Size and Zeta Potential of Nanorods by Ferguson Analysis. Langmuir, 2010, 26, 13071-13075.	1.6	38
40	Platinumâ^'Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithiumâ^'Air Batteries. Journal of the American Chemical Society, 2010, 132, 12170-12171.	6.6	1,171
41	Enhancement of <i>In Vitro</i> Translation by Gold Nanoparticleâ^'DNA Conjugates. ACS Nano, 2010, 4, 2555-2560.	7.3	57
42	Direct Colloidal Route for Pt-Covered AuPt Bimetallic Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 2514-2518.	2.1	41
43	Effect of Ligands on Thermal Dissipation from Gold Nanorods. Langmuir, 2010, 26, 3786-3789.	1.6	60
44	Protein thin film machines. Nanoscale, 2010, 2, 2570.	2.8	26
45	Release Mechanism of Octadecyl Rhodamine B Chloride from Au Nanorods by Ultrafast Laser Pulses. Journal of Physical Chemistry C, 2009, 113, 5967-5973.	1.5	27
46	Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. ACS Nano, 2009, 3, 80-86.	7.3	395
47	Site-directed nanoparticle labeling of cytochrome <i>c</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4095-4100.	3.3	107
48	Ligand Customization and DNA Functionalization of Gold Nanorods via Round-Trip Phase Transfer Ligand Exchange. Langmuir, 2008, 24, 9966-9969.	1.6	184
49	Evaluation of Hydrodynamic Size and Zeta-Potential of Surface-Modified Au Nanoparticle-DNA Conjugates via Ferguson Analysis. Journal of Physical Chemistry C, 2008, 112, 7611-7616.	1.5	55
50	Structure of cytochrome c at the interface with magnetic CoFe2O4 nanoparticles. Soft Matter, 2008, 4, 554.	1.2	24
51	Nucleotideâ^'Surface Interactions in DNA-Modified Auâ^'Nanoparticle Conjugates: Sequence Effects on Reactivity and Hybridization. Journal of Physical Chemistry C, 2008, 112, 7517-7521.	1.5	57
52	High-Density Encapsulation of Fe ₃ O ₄ Nanoparticles in Lipid Vesicles. Langmuir, 2007, 23, 9546-9550.	1.6	59
53	Magnetic field heating study of Fe-doped Au nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 309, 15-19.	1.0	41
54	Control of Enzymatic Activities by Magnetite Nanoparticles. Materials Research Society Symposia Proceedings, 2006, 950, 1.	0.1	0

#	Article	IF	CITATIONS
55	Synthesis of water-soluble, magnetic Fe/Au nanoparticles. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	3
56	Selective Heating of Multiple Nanoparticles. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	1
57	Site-specific Labeling of Active Proteins with Gold Nanoparticles. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	1
58	Gold Nanoparticleâ^'Cytochrome c Complexes:Â The Effect of Nanoparticle Ligand Charge on Protein Structure. Langmuir, 2005, 21, 12080-12084.	1.6	210
59	Labeling Ribonuclease S with a 3 nm Au Nanoparticle by Two-Step Assembly. Nano Letters, 2005, 5, 519-522.	4.5	48
60	Changes in Oligonucleotide Conformation on Nanoparticle Surfaces by Modification with Mercaptohexanol. Nano Letters, 2004, 4, 1925-1929.	4.5	132
61	Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature, 2002, 415, 152-155.	13.7	382