Ahmet Rasim Barutcu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4712243/publications.pdf

Version: 2024-02-01

23 papers

1,240 citations

430442 18 h-index 610482 24 g-index

24 all docs

24 docs citations

times ranked

24

2392 citing authors

#	Article	IF	CITATIONS
1	Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biology, 2015, 16, 214.	3.8	206
2	Interchromosomal interactions: A genomic love story of kissing chromosomes. Journal of Cell Biology, 2019, 218, 27-38.	2.3	98
3	A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nature Communications, 2018, 9, 1444.	5.8	97
4	InÂVivo Characterization of Linc-p21 Reveals Functional cis -Regulatory DNA Elements. Cell Reports, 2016, 16, 2178-2186.	2.9	94
5	SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells. Genome Research, 2016, 26, 1188-1201.	2.4	90
6	Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nature Structural and Molecular Biology, 2018, 25, 176-184.	3.6	75
7	Differential contribution of steadyâ€state <scp>RNA</scp> and active transcription in chromatin organization. EMBO Reports, 2019, 20, e48068.	2.0	61
8	RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1389-1397.	0.9	60
9	Inter-chromosomal Contact Properties in Live-Cell Imaging and in Hi-C. Molecular Cell, 2018, 69, 1039-1045.e3.	4.5	60
10	Câ€ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higherâ€Order Chromatin Organization. Journal of Cellular Physiology, 2016, 231, 31-35.	2.0	50
11	Yeast one-hybrid assays for gene-centered human gene regulatory network mapping. Nature Methods, 2011, 8, 1050-1052.	9.0	48
12	Intranuclear and higherâ€order chromatin organization of the major histone gene cluster in breast cancer. Journal of Cellular Physiology, 2018, 233, 1278-1290.	2.0	40
13	Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. Journal of Cellular Biochemistry, 2016, 117, 9-19.	1.2	39
14	Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Molecular Cell, 2022, 82, 1035-1052.e9.	4.5	31
15	The bone-specific Runx2-P1 promoter displays conserved three-dimensional chromatin structure with the syntenic Supt3h promoter. Nucleic Acids Research, 2014, 42, 10360-10372.	6.5	28
16	Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene, 2014, 550, 1-9.	1.0	28
17	Epigenetic Control of Cell Cycle-Dependent Histone Gene Expression Is a Principal Component of the Abbreviated Pluripotent Cell Cycle. Molecular and Cellular Biology, 2012, 32, 3860-3871.	1.1	25
18	The connection between BRG1, CTCF and topoisomerases at TAD boundaries. Nucleus, 2017, 8, 150-155.	0.6	24

#	Article	IF	CITATIONS
19	Enhancers in the Peril lincRNA locus regulate distant but not local genes. Genome Biology, 2018, 19, 219.	3.8	20
20	Identifying Nuclear Matrixâ€Attached DNA Across the Genome. Journal of Cellular Physiology, 2017, 232, 1295-1305.	2.0	19
21	The PPARÎ ³ Locus Makes Long-Range Chromatin Interactions with Selected Tissue-Specific Gene Loci during Adipocyte Differentiation in a Protein Kinase A Dependent Manner. PLoS ONE, 2014, 9, e86140.	1.1	14
22	Reorganization of <i>interâ€</i> chromosomal interactions in the 2q37â€deletion syndrome. EMBO Journal, 2018, 37, .	3.5	13
23	Cancer-testis gene expression is associated with the methylenetetrahydrofolate reductase 677 C>T polymorphism in non-small cell lung carcinoma. BMC Medical Genetics, 2013, 14, 97.	2.1	5