Adeline M Hajjar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4712214/publications.pdf

Version: 2024-02-01

49 papers 6,052 citations

30 h-index 223390 49 g-index

54 all docs

54 docs citations

times ranked

54

7942 citing authors

#	Article	IF	CITATIONS
1	Macrophage migration inhibitory factor regulates specific innate immune sensor responses in gingival epithelial cells. Journal of Periodontology, 2022, 93, 1940-1950.	1.7	4
2	The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota l-carnitine catabolism. Nature Microbiology, 2022, 7, 73-86.	5.9	36
3	Early evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in <i>Yersinia pestis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22984-22991.	3.3	22
4	CFTR dysregulation drives active selection of the gut microbiome. PLoS Pathogens, 2020, 16, e1008251.	2.1	57
5	Role of TLR4 in Persistent Leptospira interrogans Infection: A Comparative In Vivo Study in Mice. Frontiers in Immunology, 2020, 11, 572999.	2.2	6
6	Expression of human TLR4/myeloid differentiation factor 2 directs an early innate immune response associated with modest increases in bacterial burden during Coxiella burnetii infection. Innate Immunity, 2019, 25, 401-411.	1.1	3
7	Human gut bacteria contain acquired interbacterial defence systems. Nature, 2019, 575, 224-228.	13.7	99
8	Tollâ€like receptorâ€2 and â€4 responses regulate neutrophil infiltration into the junctional epithelium and significantly contribute to the composition of the oral microbiota. Journal of Periodontology, 2019, 90, 1202-1212.	1.7	21
9	Ferreting Out the Role of Infection in Cystic Fibrosis Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1243-1244.	2.5	3
10	Expression level of human TLR4 rather than sequence is the key determinant of LPS responsiveness. PLoS ONE, 2017, 12, e0186308.	1.1	16
11	TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages. Journal of Immunology Research, 2016, 2016, 1-10.	0.9	9
12	A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation. PLoS ONE, 2016, 11, e0164632.	1.1	16
13	Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces. Journal of Biological Chemistry, 2015, 290, 13440-13453.	1.6	14
14	Potential for using a hermetically-sealed, positive-pressured isocage system for studies involving germ-free mice outside a flexible-film isolator. Gut Microbes, 2015, 6, 255-265.	4.3	36
15	Humanized TLR7/8 Expression Drives Proliferative Multisystemic Histiocytosis in C57BL/6 Mice. PLoS ONE, 2014, 9, e107257.	1.1	13
16	NLRC4 and TLR5 Each Contribute to Host Defense in Respiratory Melioidosis. PLoS Neglected Tropical Diseases, 2014, 8, e3178.	1.3	27
17	Temporal and Anatomical Host Resistance to Chronic Salmonella Infection Is Quantitatively Dictated by Nramp1 and Influenced by Host Genetic Background. PLoS ONE, 2014, 9, e111763.	1.1	37
18	Regulation of versican expression by bacterial infection is TLR4â€dependent but MyD88â€independent (1046.3). FASEB Journal, 2014, 28, 1046.3.	0.2	0

#	Article	IF	CITATIONS
19	Innate Immune Detection of Flagellin Positively and Negatively Regulates Salmonella Infection. PLoS ONE, 2013, 8, e72047.	1.1	40
20	Humanized TLR4/MD-2 Mice Reveal LPS Recognition Differentially Impacts Susceptibility to Yersinia pestis and Salmonella enterica. PLoS Pathogens, 2012, 8, e1002963.	2.1	64
21	Role of Francisella Lipid A Phosphate Modification in Virulence and Long-Term Protective Immune Responses. Infection and Immunity, 2012, 80, 943-951.	1.0	32
22	Homeostatic Regulation of Salmonella-Induced Mucosal Inflammation and Injury by IL-23. PLoS ONE, 2012, 7, e37311.	1.1	25
23	Identification, cloning, expression, and purification of Francisella lpp3: An immunogenic lipoprotein. Microbiological Research, 2010, 165, 531-545.	2.5	16
24	Ontogeny of Toll-Like Receptor Mediated Cytokine Responses of Human Blood Mononuclear Cells. PLoS ONE, 2010, 5, e15041.	1.1	148
25	Variability in the Lipooligosaccharide Structure and Endotoxicity amongBordetella pertussisStrains. Journal of Infectious Diseases, 2010, 202, 1897-1906.	1.9	30
26	Substitution of the <i>Bordetella pertussis</i> Lipid A Phosphate Groups with Glucosamine Is Required for Robust NF-1ºB Activation and Release of Proinflammatory Cytokines in Cells Expressing Human but Not Murine Toll-Like Receptor 4-MD-2-CD14. Infection and Immunity, 2010, 78, 2060-2069.	1.0	45
27	Neonatal Innate TLR-Mediated Responses Are Distinct from Those of Adults. Journal of Immunology, 2009, 183, 7150-7160.	0.4	390
28	Inactivation of Chibby affects function of motile airway cilia. Journal of Cell Biology, 2009, 185, 225-233.	2.3	81
29	Inhalation of Francisella novicida l'mglA causes replicative infection that elicits innate and adaptive responses but is not protective against invasive pneumonic tularemia. Microbes and Infection, 2008, 10, 773-780.	1.0	21
30	Polychromatic flow cytometric high-throughput assay to analyze the innate immune response to Toll-like receptor stimulation. Journal of Immunological Methods, 2008, 336, 183-192.	0.6	46
31	A Francisella Mutant in Lipid A Carbohydrate Modification Elicits Protective Immunity. PLoS Pathogens, 2008, 4, e24.	2.1	76
32	Toll-like Receptor 1 Polymorphisms Affect Innate Immune Responses and Outcomes in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 710-720.	2.5	258
33	Administration of a Synthetic TLR4 Agonist Protects Mice from Pneumonic Tularemia. Journal of Immunology, 2008, 180, 7574-7581.	0.4	57
34	Induction of Protective Immunity toListeria monocytogenesin Neonates. Journal of Immunology, 2007, 178, 3695-3701.	0.4	46
35	Redundant Toll-like receptor signaling in the pulmonary host response toPseudomonas aeruginosa. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L312-L322.	1.3	124
36	Lack of In Vitro and In Vivo Recognition of Francisella tularensis Subspecies Lipopolysaccharide by Toll-Like Receptors. Infection and Immunity, 2006, 74, 6730-6738.	1.0	147

#	Article	IF	CITATIONS
37	An Essential Role for Non–Bone Marrow–Derived Cells in Control ofPseudomonas aeruginosaPneumonia. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 470-475.	1.4	64
38	Induction of Proinflammatory Responses in Macrophages by the Glycosylphosphatidylinositols of Plasmodium falciparum. Journal of Biological Chemistry, 2005, 280, 8606-8616.	1.6	437
39	Cutting Edge: Myeloid Differentiation Factor 88 Is Essential for Pulmonary Host Defense against <i>Pseudomonas aeruginosa</i> but Not <i>Staphylococcus aureus</i> Journal of Immunology, 2004, 172, 3377-3381.	0.4	174
40	Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cellular Microbiology, 2004, 6, 235-242.	1.1	164
41	Porphyromonas gingivalis Lipopolysaccharide Contains Multiple Lipid A Species That Functionally Interact with Both Toll-Like Receptors 2 and 4. Infection and Immunity, 2004, 72, 5041-5051.	1.0	452
42	Deficient MHC class I cross-presentation of soluble antigen by murine neonatal dendritic cells. Blood, 2004, 103, 4240-4242.	0.6	8
43	Respiratory epithelial cells regulate lung inflammation in response to inhaled endotoxin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L143-L152.	1.3	189
44	Cutting Edge: Protective Cell-Mediated Immunity to <i>Listeria monocytogenes</i> in the Absence of Myeloid Differentiation Factor 88. Journal of Immunology, 2003, 171, 533-537.	0.4	70
45	<i>>Pseudomonas aeruginosa</i> lipid A diversity and its recognition by Toll-like receptor 4. Journal of Endotoxin Research, 2003, 9, 395-400.	2.5	80
46	Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nature Immunology, 2002, 3, 354-359.	7.0	548
47	Cutting Edge: Functional Interactions Between Toll-Like Receptor (TLR) 2 and TLR1 or TLR6 in Response to Phenol-Soluble Modulin. Journal of Immunology, 2001, 166, 15-19.	0.4	441
48	The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 1999, 402, 39-43.	13.7	9
49	The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 1999, 401, 811-815.	13.7	1,295