Yanbing Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/471215/publications.pdf

Version: 2024-02-01

759233 713466 21 937 12 21 citations h-index g-index papers 21 21 21 998 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Co–precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochimica Acta, 2014, 130, 82-89.	5.2	164
2	Electrochemical behaviours of SiO 2 -coated LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials by a novel modification method. Journal of Alloys and Compounds, 2016 , 657 , 570 - 581 .	5.5	160
3	Conductive Polymers Encapsulation To Enhance Electrochemical Performance of Ni-Rich Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Encapsulation States (2018, 10, 18270-18280).	8.0	146
4	Mg–Al–B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochimica Acta, 2016, 190, 264-275.	5.2	108
5	Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Applied Surface Science, 2019, 481, 1228-1238.	6.1	94
6	One strategy to enhance electrochemical properties of Ni-based cathode materials under high cut-off voltage for Li-ion batteries. Journal of Power Sources, 2016, 328, 422-432.	7.8	59
7	Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials via Li4P2O7 surface modification for Li-ion batteries. Ceramics International, 2018, 44, 14209-14216.	4.8	34
8	Novel efficient synthesis of nanosized carbon coated LiMnPO4 composite for lithium ion batteries and its electrochemical performance. Journal of Power Sources, 2014, 268, 146-152.	7.8	32
9	In Situ Surface Modification for Improving the Electrochemical Performance of Niâ€Rich Cathode Materials by Using ZrP ₂ O ₇ . ChemSusChem, 2020, 13, 1603-1612.	6.8	32
10	Graphene@TiO2 co-modified LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced electrochemical performance under harsh conditions. Electrochimica Acta, 2018, 289, 149-157.	5.2	31
11	A facile in-situ coating strategy for Ni-rich cathode materials with improved electrochemical performance. Electrochimica Acta, 2021, 383, 138297.	5.2	18
12	Surface Architecture Design of LiNi _{0.05} O ₂ Cathode with Synergistic Organics Encapsulation to Enhance Electrochemical Stability. ChemSusChem, 2020, 13, 5699-5710.	6.8	17
13	Synthesis and characterization of LiMn0.8Fe0.2PO4/rGO/C for lithium-ion batteries via in-situ coating of Mn0.8Fe0.2C2O4·2H2O precursor with graphene oxide. Journal of Solid State Electrochemistry, 2020, 24, 2441-2450.	2.5	7
14	Enhanced cycle performance and synthesis of LiNi0.6Co0.2Mn0.2O2 single-crystal through the assist of Ba ion. Journal of Power Sources, 2022, 542, 231784.	7.8	7
15	Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery. Electrochimica Acta, 2021, 387, 138456.	5.2	6
16	Synthesis of LiFePO4 using FeSO4·7H2O byproduct from TiO2 production as raw material. Rare Metals, 2009, 28, 612-617.	7.1	5
17	Improving the high-voltage performance of LiNi0.6Co0.2Mn0.2O2 by co-doping of zirconium and erbium. Solid State Ionics, 2021, 371, 115757.	2.7	5
18	Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes. Journal of Power Sources, 2022, 541, 231671.	7.8	5

#	Article	IF	CITATIONS
19	Preparation of spherical spinel LiCr0.04Mn1.96O4 cathode materials based on the slurry spray drying method. Rare Metals, 2009, 28, 618-623.	7.1	4
20	Enhancing the Structure and Interface Stability of LiNi _{0.83} Co _{0.12} Mn _{0.05} O ₂ Cathode Material for Li-lon Batteries via Facile CeP ₂ O ₇ Coating. ACS Sustainable Chemistry and Engineering, 2022, 10, 4881-4893.	6.7	2
21	Enhancing Surface Chemical Stability of LiMn ₂ O ₄ Cathode by Strontium Enrichment at Grain Boundaries. ChemSusChem, 2021, 14, 5476-5487.	6.8	1