Maria-Francesca Santolla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4712100/publications.pdf

Version: 2024-02-01

23 papers 1,516 citations

304368 22 h-index 642321 23 g-index

24 all docs

24 docs citations

times ranked

24

2227 citing authors

#	Article	IF	Citations
1	Bisphenol A Induces Gene Expression Changes and Proliferative Effects through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts. Environmental Health Perspectives, 2012, 120, 1177-1182.	2.8	234
2	HIF- $\hat{1}$ ±/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Research, 2013, 15, R64.	2.2	173
3	Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget, 2015, 6, 34158-34177.	0.8	128
4	GPER Mediates Activation of HIF1α/VEGF Signaling by Estrogens. Cancer Research, 2014, 74, 4053-4064.	0.4	105
5	G Protein-coupled Estrogen Receptor Mediates the Up-regulation of Fatty Acid Synthase Induced by $17\hat{l}^2$ -Estradiol in Cancer Cells and Cancer-associated Fibroblasts. Journal of Biological Chemistry, 2012, 287, 43234-43245.	1.6	87
6	Oleuropein and hydroxytyrosol activate <scp>GPER</scp> / <scp>GPR</scp> 30â€dependent pathways leading to apoptosis of <scp>ER</scp> â€negative <scp>SKBR</scp> 3 breast cancer cells. Molecular Nutrition and Food Research, 2014, 58, 478-489.	1.5	82
7	MIBE acts as antagonist ligand of both estrogen receptor \hat{l}_{\pm} and GPER in breast cancer cells. Breast Cancer Research, 2012, 14, R12.	2.2	81
8	Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 58.	3.5	60
9	GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget, 2016, 7, 94-111.	0.8	57
10	BCL11A interacts with SOX2 to control the expression of epigenetic regulators in lung squamous carcinoma. Nature Communications, 2018, 9, 3327.	5.8	54
11	The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers, 2020, 12, 3029.	1.7	54
12	miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. Journal of Experimental and Clinical Cancer Research, 2018, 37, 94.	3.5	49
13	GPER, IGFâ€IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancerâ€associated fibroblasts. Molecular Carcinogenesis, 2017, 56, 580-593.	1.3	43
14	Niacin activates the G protein estrogen receptor (GPER)-mediated signalling. Cellular Signalling, 2014, 26, 1466-1475.	1.7	42
15	GPER Mediates a Feedforward FGF2/FGFR1 Paracrine Activation Coupling CAFs to Cancer Cells Toward Breast Tumor Progression. Cells, 2019, 8, 223.	1.8	41
16	Estrogenic gper signaling regulates mir144 expression in cancer cells and cancer-associated fibroblasts (cafs). Oncotarget, 2015, 6, 16573-16587.	0.8	35
17	Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells. Oncotarget, 2016, 7, 52710-52728.	0.8	35
18	Identification of two benzopyrroloxazines acting as selective GPER antagonists in breast cancer cells and cancer-associated fibroblasts. Future Medicinal Chemistry, 2015, 7, 437-448.	1.1	33

#	Article	IF	CITATIONS
19	A calixpyrrole derivative acts as a GPER antagonist: mechanisms and models. DMM Disease Models and Mechanisms, 2015, 8, 1237-46.	1.2	32
20	Macromolecular Modelling and Docking Simulations for the Discovery of Selective GPER Ligands. AAPS Journal, 2016, 18, 41-46.	2.2	30
21	(6-Bromo-1,4-dimethyl-9 <i>H</i> -carbazol-3-yl-methylene)-hydrazine (Carbhydraz) Acts as a GPER Agonist in Breast Cancer Cells. Current Topics in Medicinal Chemistry, 2015, 15, 1035-1042.	1.0	27
22	miR-338-3p Is Regulated by Estrogens through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (CAFs). Cells, 2018, 7, 203.	1.8	25
23	S100A4 Is Involved in Stimulatory Effects Elicited by the FGF2/FGFR1 Signaling Pathway in Triple-Negative Breast Cancer (TNBC) Cells. International Journal of Molecular Sciences, 2021, 22, 4720.	1.8	9