## **Bruce Allan Palfey**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/47111/publications.pdf Version: 2024-02-01



RRUCE ALLAN PALEEY

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Flavin binding affinity and initial kinetic characterization of DnmZ, a flavinâ€dependent Nâ€oxygenase.<br>FASEB Journal, 2022, 36, .                                                                                               | 0.5  | 0         |
| 2  | Kinetic Analysis of Transient Intermediates in the Mechanism of Prenyl-Flavin-Dependent Ferulic Acid<br>Decarboxylase. Biochemistry, 2021, 60, 125-134.                                                                             | 2.5  | 6         |
| 3  | An enzymatic activation of formaldehyde for nucleotide methylation. Nature Communications, 2021, 12, 4542.                                                                                                                          | 12.8 | 6         |
| 4  | Fast Kinetics Reveals Rate-Limiting Oxidation and the Role of the Aromatic Cage in the Mechanism of the Nicotine-Degrading Enzyme NicA2. Biochemistry, 2021, 60, 259-273.                                                           | 2.5  | 8         |
| 5  | Tunable Heteroaromatic Sulfones Enhance in-Cell Cysteine Profiling. Journal of the American Chemical Society, 2020, 142, 1801-1810.                                                                                                 | 13.7 | 69        |
| 6  | Preface. Methods in Enzymology, 2019, 620, xix-xx.                                                                                                                                                                                  | 1.0  | 0         |
| 7  | Structural Basis for Selectivity in Flavin-Dependent Monooxygenase-Catalyzed Oxidative Dearomatization. ACS Catalysis, 2019, 9, 3633-3640.                                                                                          | 11.2 | 28        |
| 8  | Enzymatic control of dioxygen binding and functionalization of the flavin cofactor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4909-4914.                                          | 7.1  | 49        |
| 9  | Two-Photon Excitation of Flavins and Flavoproteins with Classical and Quantum Light. Journal of the<br>American Chemical Society, 2018, 140, 14562-14566.                                                                           | 13.7 | 53        |
| 10 | Flavins as Covalent Catalysts: New Mechanisms Emerge. Trends in Biochemical Sciences, 2017, 42,<br>457-469.                                                                                                                         | 7.5  | 103       |
| 11 | Initial investigations of C4a-(hydro)peroxyflavin intermediate formation by dibenzothiophene monooxygenase. Biochemical and Biophysical Research Communications, 2016, 481, 189-194.                                                | 2.1  | 6         |
| 12 | Deprotonations in the Reaction of Flavin-Dependent Thymidylate Synthase. Biochemistry, 2016, 55, 3261-3269.                                                                                                                         | 2.5  | 16        |
| 13 | Biochemical Establishment and Characterization of EncM's Flavin-N5-oxide Cofactor. Journal of the<br>American Chemical Society, 2015, 137, 8078-8085.                                                                               | 13.7 | 80        |
| 14 | Kinetic Mechanism and the Rate-limiting Step of Plasmodium vivax Serine Hydroxymethyltransferase.<br>Journal of Biological Chemistry, 2015, 290, 8656-8665.                                                                         | 3.4  | 10        |
| 15 | Study of Kinetic Mechanism of Flavinâ€Đependent Thymidylate Synthase from Thermotoga Maritima.<br>FASEB Journal, 2015, 29, 573.23.                                                                                                  | 0.5  | 0         |
| 16 | Detection of Intermediates in the Oxidative Half-Reaction of the FAD-Dependent Thymidylate Synthase from <i>Thermotoga maritima</i> : Carbon Transfer without Covalent Pyrimidine Activation.<br>Biochemistry, 2014, 53, 5199-5207. | 2.5  | 17        |
| 17 | Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement. Nature, 2013, 503, 552-556.                                                                                                                      | 27.8 | 147       |
| 18 | Actin Stimulates Reduction of the MICAL-2 Monooxygenase Domain. Biochemistry, 2013, 52, 6076-6084.                                                                                                                                  | 2.5  | 22        |

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Oxidation Mode of Pyranose 2-Oxidase Is Controlled by pH. Biochemistry, 2013, 52, 1437-1445.                                                                                       | 2.5  | 21        |
| 20 | Trapping of an Intermediate in the Reaction Catalyzed by Flavin-Dependent Thymidylate Synthase.<br>Journal of the American Chemical Society, 2012, 134, 4442-4448.                 | 13.7 | 31        |
| 21 | Substrate Binding and Reactivity Are Not Linked: Grafting a Proton-Transfer Network into a Class 1A<br>Dihydroorotate Dehydrogenase. Biochemistry, 2011, 50, 2714-2716.            | 2.5  | 3         |
| 22 | The Cationâ²ï€ Interaction between Lys53 and the Flavin of Fructosamine Oxidase (FAOX-II) Is Critical for<br>Activity. Biochemistry, 2011, 50, 7977-7986.                          | 2.5  | 10        |
| 23 | Oxygen Reactivity in Flavoenzymes: Context Matters. Journal of the American Chemical Society, 2011, 133, 16809-16811.                                                              | 13.7 | 64        |
| 24 | An Analysis of the Solution Structure and Signaling Mechanism of LovK, a Sensor Histidine Kinase<br>Integrating Light and Redox Signals. Biochemistry, 2010, 49, 6761-6770.        | 2.5  | 70        |
| 25 | Flavin-Dependent Enzymes. , 2010, , 37-113.                                                                                                                                        |      | 57        |
| 26 | Control of catalysis in flavin-dependent monooxygenases. Archives of Biochemistry and Biophysics, 2010, 493, 26-36.                                                                | 3.0  | 152       |
| 27 | Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction. Journal of Biological Chemistry, 2009, 284, 10324-10333.       | 3.4  | 40        |
| 28 | Quinone reductase acts as a redox switch of the 20 S yeast proteasome. EMBO Reports, 2009, 10, 65-70.                                                                              | 4.5  | 38        |
| 29 | An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature, 2009, 458, 919-923.                                                                | 27.8 | 79        |
| 30 | A single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductase. FEBS Journal, 2009, 276, 5263-5274.                             | 4.7  | 35        |
| 31 | Roles in Binding and Chemistry for Conserved Active Site Residues in the Class 2 Dihydroorotate<br>Dehydrogenase from <i>Escherichia coli</i> . Biochemistry, 2009, 48, 7169-7178. | 2.5  | 20        |
| 32 | Mechanism of Flavin Reduction and Oxidation in the Redox-Sensing Quinone Reductase Lot6p<br>from <i>Saccharomyces cerevisiae</i> . Biochemistry, 2009, 48, 8636-8643.              | 2.5  | 30        |
| 33 | Disruption of the Proton Relay Network in the Class 2 Dihydroorotate Dehydrogenase<br>from <i>Escherichia coli</i> . Biochemistry, 2009, 48, 9801-9809.                            | 2.5  | 9         |
| 34 | The dimeric dihydroorotate dehydrogenase A from Lactococcus lactis dissociates reversibly into inactive monomers. Protein Science, 2009, 11, 2575-2583.                            | 7.6  | 20        |
| 35 | Adenosyltransferase tailors and delivers coenzyme B12. Nature Chemical Biology, 2008, 4, 194-196.                                                                                  | 8.0  | 81        |
| 36 | Characterization of a Novel Bifunctional Dihydropteroate Synthase/Dihydropteroate Reductase<br>Enzyme from Helicobacter pylori. Journal of Bacteriology, 2007, 189, 4062-4069.     | 2.2  | 12        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mechanism of Flavin Reduction in the Class 1A Dihydroorotate Dehydrogenase from Lactococcus lactis. Biochemistry, 2007, 46, 4028-4036.                                                                                                                                                  | 2.5  | 25        |
| 38 | Interaction of Benzoate Pyrimidine Analogues with Class 1A Dihydroorotate Dehydrogenase from Lactococcus lactis,. Biochemistry, 2007, 46, 5741-5753.                                                                                                                                    | 2.5  | 15        |
| 39 | Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification. FEBS Journal, 2007, 274, 1328-1339.                                                                                                                                   | 4.7  | 45        |
| 40 | Analysis of the Kinetic Isotope Effects on Initial Rates in Transient Kinetics. Biochemistry, 2006, 45, 13631-13640.                                                                                                                                                                    | 2.5  | 6         |
| 41 | Relationship between the Time-Dependence of a Transient-State Kinetic Isotope Effect and the Location of Complexes in a Reaction Sequence. Journal of Physical Chemistry A, 2006, 110, 4465-4472.                                                                                       | 2.5  | 4         |
| 42 | Mechanism of Flavin Reduction in Class 2 Dihydroorotate Dehydrogenases. Biochemistry, 2006, 45, 14926-14932.                                                                                                                                                                            | 2.5  | 40        |
| 43 | Graduate Education in Chemical Biology at the University of Michigan. ACS Chemical Biology, 2006, 1, 487-488.                                                                                                                                                                           | 3.4  | 1         |
| 44 | A Fluoro Analogue of the Menadione Derivative 6-[2â€~-(3â€~-Methyl)-1â€~,4â€~-naphthoquinolyl]hexanoic Acid Is<br>a Suicide Substrate of Glutathione Reductase. Crystal Structure of the Alkylated Human Enzymeâ€.<br>Journal of the American Chemical Society, 2006, 128, 10784-10794. | 13.7 | 84        |
| 45 | Single-molecule kinetics reveals signatures of half-sites reactivity in dihydroorotate dehydrogenase A<br>catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103,<br>5775-5780.                                                          | 7.1  | 45        |
| 46 | Conformational Dynamics of the Isoalloxazine in Substrate-Free p-Hydroxybenzoate Hydroxylase:<br>Single-Molecule Studies. Journal of the American Chemical Society, 2005, 127, 18171-18178.                                                                                             | 13.7 | 38        |
| 47 | Kinetics of Proton-Linked Flavin Conformational Changes inp-Hydroxybenzoate Hydroxylaseâ€.<br>Biochemistry, 2005, 44, 13304-13314.                                                                                                                                                      | 2.5  | 14        |
| 48 | Direct Observation of the Participation of Flavin in Product Formation bythyX-Encoded Thymidylate<br>Synthase. Journal of the American Chemical Society, 2005, 127, 832-833.                                                                                                            | 13.7 | 30        |
| 49 | Raman spectrum of fully reduced flavin. Journal of Raman Spectroscopy, 2004, 35, 521-524.                                                                                                                                                                                               | 2.5  | 43        |
| 50 | Multiple States of the Tyr318Leu Mutant of Dihydroorotate Dehydrogenase Revealed by<br>Single-Molecule Kinetics. Journal of the American Chemical Society, 2004, 126, 6914-6922.                                                                                                        | 13.7 | 40        |
| 51 | Catalysis of Diaphorase Reactions byMycobacterium tuberculosisLipoamide Dehydrogenase Occurs at<br>the EH4Levelâ€. Biochemistry, 2003, 42, 2218-2228.                                                                                                                                   | 2.5  | 37        |
| 52 | Altered Balance of Half-reactions in p-Hydroxybenzoate Hydroxylase Caused by Substituting the 2′-Carbon of FAD with Fluorine. Journal of Biological Chemistry, 2003, 278, 22210-22216.                                                                                                  | 3.4  | 4         |
| 53 | Role of Protein Flexibility in the Catalytic Cycle ofp-Hydroxybenzoate Hydroxylase Elucidated by the Pro293Ser Mutantâ€. Biochemistry, 2002, 41, 8438-8446.                                                                                                                             | 2.5  | 42        |
| 54 | The Lipoamide Dehydrogenase from Mycobacterium tuberculosis Permits the Direct Observation of Flavin Intermediates in Catalysis. Biochemistry, 2002, 41, 14580-14590.                                                                                                                   | 2.5  | 19        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dihydrooxonate Is a Substrate of Dihydroorotate Dehydrogenase (DHOD) Providing Evidence for<br>Involvement of Cysteine and Serine Residues in Base Catalysis. Archives of Biochemistry and<br>Biophysics, 2001, 391, 286-294.                            | 3.0 | 25        |
| 56 | Protein Dynamics Control Proton Transfers to the Substrate on the His72Asn Mutant of p-Hydroxybenzoate Hydroxylase. Biochemistry, 2001, 40, 3891-3899.                                                                                                   | 2.5 | 27        |
| 57 | Kinetic Studies, Mechanism, and Substrate Specificity of Amadoriase I fromAspergillus sp.â€.<br>Biochemistry, 2001, 40, 12886-12895.                                                                                                                     | 2.5 | 27        |
| 58 | Insight into the Chemistry of Flavin Reduction and Oxidation inEscherichia coliDihydroorotate<br>Dehydrogenase Obtained by Rapid Reaction Studiesâ€. Biochemistry, 2001, 40, 4381-4390.                                                                  | 2.5 | 51        |
| 59 | Specific Inhibition of a Family 1A Dihydroorotate Dehydrogenase by Benzoate Pyrimidine Analogues.<br>Journal of Medicinal Chemistry, 2001, 44, 2861-2864.                                                                                                | 6.4 | 22        |
| 60 | Comparison of resonance Raman spectra of flavin-3,4-dihydroxybenzoate charge-transfer complexes in three flavoenzymes. Journal of Raman Spectroscopy, 2001, 32, 579-586.                                                                                 | 2.5 | 8         |
| 61 | Comparing protein-ligand interactions in solution and single crystals by Raman spectroscopy.<br>Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3006-3011.                                                    | 7.1 | 61        |
| 62 | Modelling flavin and substrate substituent effects on the activation barrier and rate of oxygen transfer byp-hydroxybenzoate hydroxylase. FEBS Letters, 2000, 478, 197-201.                                                                              | 2.8 | 29        |
| 63 | On the interpretation of quantitative structure-function activity relationship data for lactate oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2480-2485.                                           | 7.1 | 48        |
| 64 | Tandem Nitroaldolâ^'Dehydration Reactions Employing the Dianion of Phenylsulfonylnitromethane1.<br>Journal of Organic Chemistry, 2000, 65, 7723-7730.                                                                                                    | 3.2 | 11        |
| 65 | Substrate Recognition by "Password―in p-Hydroxybenzoate Hydroxylase. Biochemistry, 1999, 38,<br>1153-1158.                                                                                                                                               | 2.5 | 88        |
| 66 | Mechanistic Insights intop-Hydroxybenzoate Hydroxylase from Studies of the Mutant Ser212Alaâ€.<br>Biochemistry, 1999, 38, 6292-6299.                                                                                                                     | 2.5 | 20        |
| 67 | Using Raman Spectroscopy To Monitor the Solvent-Exposed and "Buried―Forms of Flavin in<br>p-Hydroxybenzoate Hydroxylase. Biochemistry, 1999, 38, 16727-16732.                                                                                            | 2.5 | 52        |
| 68 | On the reaction mechanism of L-lactate oxidase: Quantitative structure-activity analysis of the<br>reaction with para-substituted L-mandelates. Proceedings of the National Academy of Sciences of the<br>United States of America, 1997, 94, 9590-9595. | 7.1 | 47        |
| 69 | Electrostatic Effects on Substrate Activation in para-Hydroxybenzoate Hydroxylase:  Studies of the<br>Mutant Lysine 297 Methionine. Biochemistry, 1997, 36, 7548-7556.                                                                                   | 2.5 | 33        |
| 70 | Probing the Chemistries of the Substrate and Flavin Ring System ofp-Hydroxybenzoate Hydroxylase by<br>Raman Difference Spectroscopyâ€. Biochemistry, 1997, 36, 12560-12566.                                                                              | 2.5 | 8         |
| 71 | Evidence for Flavin Movement in the Function of p-Hydroxybenzoate Hydroxylase from Studies of the Mutant Arg220Lys. Biochemistry, 1996, 35, 9278-9285.                                                                                                   | 2.5 | 33        |
| 72 | Catalytic function of the conserved hydroxyl group in the protein tyrosine phosphatase signature motif. Biochemistry, 1995, 34, 16389-16396.                                                                                                             | 2.5 | 83        |

|    |                                                                                                                                                                             |     | _         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
| 73 | Oxygen Activation by Flavins and Pterins. , 1995, , 37-83.                                                                                                                  |     | 33        |
| 74 | Crystal Structures of Mutant Pseudomonas aeruginosa p-Hydroxybenzoate Hydroxylases: The<br>Tyr201Phe, Tyr385Phe, and Asn300Asp Variants. Biochemistry, 1994, 33, 1555-1564. | 2.5 | 40        |
| 75 | Changes in the Catalytic Properties of p-Hydroxybenzoate Hydroxylase Caused by the Mutation<br>Asn300Asp. Biochemistry, 1994, 33, 1545-1554.                                | 2.5 | 52        |
| 76 | A Novel Leflunomide Analog, UTL-5b (GBL-5b), Suppresses JAK3, MAP3K2, and LITAF Genes. American<br>Journal of Biomedical Sciences, 0, , 218-227.                            | 0.2 | 11        |