N Flores-HolguÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4710977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural Carotenoids as Nanomaterial Precursors for Molecular Photovoltaics: A Computational DFT Study. Molecules, 2010, 15, 4490-4510.	3.8	59
2	Chemical Reactivity Properties, pKa Values, AGEs Inhibitor Abilities and Bioactivity Scores of the Mirabamides A–H Peptides of Marine Origin Studied by Means of Conceptual DFT. Marine Drugs, 2018, 16, 302.	4.6	49
3	Density Functional Theory (DFT) Study of Triphenylamine-Based Dyes for Their Use as Sensitizers in Molecular Photovoltaics. International Journal of Molecular Sciences, 2012, 13, 4418-4432.	4.1	36
4	A fast and simple evaluation of the chemical reactivity properties of the Pristinamycin family of antimicrobial peptides. Chemical Physics Letters, 2020, 739, 137021.	2.6	36
5	Virtual Screening of Marine Natural Compounds by Means of Chemoinformatics and CDFT-Based Computational Peptidology. Marine Drugs, 2020, 18, 478.	4.6	32
6	Theoretical study of chemical reactivity of the main species in the α-pinene isomerization reaction. Computational and Theoretical Chemistry, 2008, 854, 81-88.	1.5	30
7	Chemical Reactivity Theory and Empirical Bioactivity Scores as Computational Peptidology Alternative Tools for the Study of Two Anticancer Peptides of Marine Origin. Molecules, 2019, 24, 1115.	3.8	30
8	Conceptual DFT-Based Computational Peptidology of Marine Natural Compounds: Discodermins A–H. Molecules, 2020, 25, 4158.	3.8	30
9	Theoretical calculation of the maximum absorption wavelength for Cyanidin molecules with several methodologies. Computational and Theoretical Chemistry, 2015, 1067, 129-134.	2.5	29
10	Chemical-Reactivity Properties, Drug Likeness, and Bioactivity Scores of Seragamides A–F Anticancer Marine Peptides: Conceptual Density Functional Theory Viewpoint. Computation, 2019, 7, 52.	2.0	27
11	Computational Molecular Nanoscience Study of the Properties of Copper Complexes for Dye-Sensitized Solar Cells. International Journal of Molecular Sciences, 2012, 13, 16005-16019.	4.1	25
12	Theoretical calculations of molecular dipole moment, polarizability, and first hyperpolarizability of glycine–sodium nitrate. Computational and Theoretical Chemistry, 2009, 905, 76-80.	1.5	24
13	A proposal based on quantum phenomena for the ORR mechanism on nitrogen-doped carbon-based electrocatalysts. International Journal of Hydrogen Energy, 2019, 44, 12374-12380.	7.1	23
14	Structure-fluorescence relationship: interplay of non-covalent interactions in homologous 1,3,5-triaryl-2-pyrazolines. New Journal of Chemistry, 2015, 39, 4359-4367.	2.8	22
15	Molecular design of copper complexes as sensitizers for efficient dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 267, 1-5.	3.9	21
16	CHIH-DFT determination of the electrical, optical, and magnetic properties and NICS aromaticity of megazol. Computational and Theoretical Chemistry, 2005, 717, 1-3.	1.5	19
17	Theoretical study of electronic properties of organic photovoltaic materials. Journal of Computational Chemistry, 2009, 30, 1027-1037.	3.3	18
18	Investigation of Antifungal Properties of Synthetic Dimethyl-4-Bromo-1-(Substituted Benzoyl) Pyrrolo[1,2-a] Quinoline-2,3-Dicarboxylates Analogues: Molecular Docking Studies and Conceptual DFT-Based Chemical Reactivity Descriptors and Pharmacokinetics Evaluation. Molecules, 2021, 26, 2722.	3.8	18

N Flores-HolguÃn

#	Article	IF	CITATIONS
19	CHIH-DFT determination of the reactivity sites of the antiparasitic drug megazol. Computational and Theoretical Chemistry, 2005, 723, 231-234.	1.5	17
20	Computational molecular characterization of the flavonoid Morin and its Pt(II), Pd(II) and Zn(II) complexes. Journal of Molecular Modeling, 2011, 17, 979-985.	1.8	16
21	Construction of a Nanodiamond–Tamoxifen Complex as a Breast Cancer Drug Delivery Vehicle. Journal of Nanomaterials, 2016, 2016, 1-9.	2.7	14
22	Calculation of the Global and Local Conceptual DFT Indices for the Prediction of the Chemical Reactivity Properties of Papuamides A–F Marine Drugs. Molecules, 2019, 24, 3312.	3.8	14
23	Electron injection in anthocyanidin and betalain dyes for dye-sensitized solar cells: a DFT approach. Journal of Computational Electronics, 2019, 18, 396-406.	2.5	13
24	Preparation, Spectroscopic Characterization, Theoretical Investigations, and In Vitro Anticancer Activity of Cd(II), Ni(II), Zn(II), and Cu(II) Complexes of 4(3H)-Quinazolinone-Derived Schiff Base. Molecules, 2020, 25, 5973.	3.8	13
25	Computational Pharmacokinetics Report, ADMET Study and Conceptual DFTâ€Based Estimation of the Chemical Reactivity Properties of Marine Cyclopeptides. ChemistryOpen, 2021, 10, 1142-1149.	1.9	12
26	Computational note on the chemical reactivity of pyrrole derivatives. Computational and Theoretical Chemistry, 2009, 912, 119-120.	1.5	11
27	Computational nanochemistry study of the molecular structure and properties of ethambutol. Journal of Molecular Modeling, 2013, 19, 3507-3515.	1.8	10
28	Conceptual DFT-Based Computational Peptidology, Pharmacokinetics Study and ADMET Report of the Veraguamides A–G Family of Marine Natural Drugs. Marine Drugs, 2022, 20, 97.	4.6	10
29	TD-DFT/IEFPCM determination of the absorption and emission spectra of DABCYL. Computational and Theoretical Chemistry, 2010, 945, 101-103.	1.5	9
30	DFT study of the interaction between the conjugated fluorescein and dabcyl system, using fluorescene quenching method. Journal of Molecular Modeling, 2012, 18, 4113-4120.	1.8	9
31	DFT calculation of the electronic properties of fluorene-1,3,4-thiadiazole oligomers. Journal of Molecular Modeling, 2013, 19, 3537-3542.	1.8	9
32	Theoretical analysis of the electronic properties in Zinc-porphyrins derivatives. Journal of Molecular Structure, 2019, 1191, 259-270.	3.6	9
33	Electronic structure study using density functional theory in organic dendrimers. Journal of Molecular Modeling, 2011, 17, 1963-1972.	1.8	8
34	CHIH-DFT computational molecular characterization of phenanthro [9,10-c]-1,2,5-thiadiazole 1,1-dioxide. Computational and Theoretical Chemistry, 2008, 862, 60-65.	1.5	6
35	Comparative study of copper complexes with different anchoring groups by molecular modeling and its application to dye-sensitized solar cells. Polyhedron, 2014, 82, 33-36.	2.2	6
36	N-((1H-Pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine and Its Co(II) and Cu(II) Complexes as Antimicrobial Agents: Chemical Preparation, In Vitro Antimicrobial Evaluation, In Silico Analysis and Computational and Theoretical Chemistry Investigations. Molecules, 2022, 27, 1436.	3.8	6

N Flores-HolguÃn

#	Article	IF	CITATIONS
37	A theoretical study of the carbocation formation energy involved in the isomerization of α-pinene. Chemical Physics Letters, 2012, 546, 168-170.	2.6	5
38	CDFT-Based Reactivity Descriptors as a Useful MEDT Chemoinformatics Tool for the Study of the Virotoxin Family of Fungal Peptides. Molecules, 2019, 24, 2707.	3.8	5
39	Virtual Screening for Potential Phytobioactives as Therapeutic Leads to Inhibit NQO1 for Selective Anticancer Therapy. Molecules, 2021, 26, 6863.	3.8	5
40	Computational prediction of the melting temperature of a DNA biosensor to detect Mycobacterium tuberculosis. Computational and Theoretical Chemistry, 2009, 912, 60-62.	1.5	4
41	Quantum chemical study of a new class of sensitisers: influence of the substitution of aromatic rings on the properties of copper complexes. Molecular Physics, 2014, 112, 987-994.	1.7	4
42	New Methods of Esterification of Nanodiamonds in Fighting Breast Cancer—A Density Functional Theory Approach. Molecules, 2017, 22, 1740.	3.8	4
43	Analysis of the Molecular Interactions between Cytochromes P450 3A4 and 1A2 and Aflatoxins: A Docking Study. Applied Sciences (Switzerland), 2019, 9, 2467.	2.5	4
44	Theoretical modifications of the molecular structure of Aurantinidin and Betanidin dyes to improve their efficiency as dye-sensitized solar cells. Journal of Computational Electronics, 2020, 19, 507-515.	2.5	4
45	Virtual Prospection of Marine Cyclopeptides as Therapeutics by Means of Conceptual DFT and Computational ADMET. Pharmaceuticals, 2022, 15, 509.	3.8	4
46	Unexpected electron acceptor behavior of the 1,3,4-thiadiazole oligomer, a DFT study. Computational and Theoretical Chemistry, 2015, 1068, 109-116.	2.5	3
47	A CDFT-Based Computational Peptidology (CDFT-CP) Study of the Chemical Reactivity and Bioactivity of the Marine-Derived Alternaramide Cyclopentadepsipeptide. Journal of Chemistry, 2021, 2021, 1-11.	1.9	3
48	Computational note on the calculation of the dipole moment, polarizability and hyperpolarizability of solanidine. Computational and Theoretical Chemistry, 2008, 849, 122-123.	1.5	2
49	Computational characterization of the molecular structure and properties of Dye 7 for organic photovoltaics. Journal of Molecular Modeling, 2012, 18, 835-842.	1.8	2
50	Chemical Reactivity Properties, Solubilities, and Bioactivity Scores of Some Pigments Derived from Carotenoids of Marine Origin through Conceptual DFT Descriptors. Journal of Chemistry, 2019, 2019, 1-12.	1.9	2
51	Computational Study of 3,4-Diphenyl-4-(4-Metoxyphenyl)-1,2,5-Thiadiazoline 1,1-Dioxide for Molecular Photovoltaics. Journal of Computational and Theoretical Nanoscience, 2011, 8, 74-79.	0.4	1
52	Influence on the reactivity properties of the substitution by different halogens on the conjugated backbone of the 1,3,5-triaryl-2-pyrazoline skeleton in relation to the increasing alkyloxy chain length: a conceptual density functional theory study. Journal of Molecular Modeling, 2020, 26, 174.	1.8	1