Martin Blum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4709983/publications.pdf

Version: 2024-02-01

304743 223800 2,559 46 22 46 citations h-index g-index papers 49 49 49 2363 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of a genetic module essential for assigning left–right asymmetry in humans and ancestral vertebrates. Nature Genetics, 2022, 54, 62-72.	21.4	16
2	The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus. Scientific Reports, 2021, 11, 13333.	3.3	3
3	Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nature Communications, 2021, 12, 5482.	12.8	24
4	CFAP43 modulates ciliary beating in mouse and Xenopus. Developmental Biology, 2020, 459, 109-125.	2.0	22
5	The FOXJ1 target <i>Cfap206</i> is required for sperm motility, mucociliary clearance of the airways and brain development. Development (Cambridge), 2020, 147, .	2.5	19
6	Conserved role of matrix metalloproteases 2 and 9 in promoting the migration of neural crest cells in avian and mammalian embryos. FASEB Journal, 2020, 34, 5240-5261.	0.5	19
7	Mechanical strain, novel genes and evolutionary insights: news from the frog left-right organizer. Current Opinion in Genetics and Development, 2019, 56, 8-14.	3.3	4
8	A dual function of FGF signaling in <i>Xenopus</i> left-right axis formation. Development (Cambridge), 2019, 146, .	2.5	11
9	The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1. Frontiers in Physiology, 2019, 10, 134.	2.8	13
10	A Conserved Role of the Unconventional Myosin 1d in Laterality Determination. Current Biology, 2018, 28, 810-816.e3.	3.9	39
11	An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus. IScience, 2018, 2, 76-85.	4.1	15
12	Animal left–right asymmetry. Current Biology, 2018, 28, R301-R304.	3.9	58
13	The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice. Scientific Reports, 2018, 8, 14678.	3.3	14
14	Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us?. Journal of Cardiovascular Development and Disease, 2018, 5, 1.	1.6	12
15	The Power of Strain: Organizing Left-Right Cilia. Developmental Cell, 2018, 45, 277-279.	7.0	7
16	<i>Xenopus</i> : An Undervalued Model Organism to Study and Model Human Genetic Disease. Cells Tissues Organs, 2018, 205, 303-313.	2.3	73
17	<i>Xenopus</i> , an ideal model organism to study laterality in conjoined twins. Genesis, 2017, 55, e22993.	1.6	7
18	A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Scientific Reports, 2017, 7, 43010.	3 . 3	20

#	Article	IF	Citations
19	Leftward Flow Determines Laterality in Conjoined Twins. Current Biology, 2017, 27, 543-548.	3.9	6
20	A novel homozygous ARL13B variant in patients with Joubert syndrome impairs its guanine nucleotide-exchange factor activity. European Journal of Human Genetics, 2017, 25, 1324-1334.	2.8	9
21	CFAP157 is a murine downstream effector of FOXJ1 that is specifically required for flagellum morphogenesis and sperm motility. Development (Cambridge), 2016, 143, 4736-4748.	2.5	19
22	Cilia are required for asymmetric nodal induction in the sea urchin embryo. BMC Developmental Biology, 2016, 16, 28.	2.1	29
23	ATP4a is required for development and function of the Xenopus mucociliary epidermis – a potential model to study proton pump inhibitor-associated pneumonia. Developmental Biology, 2015, 408, 292-304.	2.0	32
24	TGF-Î ² Signaling Regulates the Differentiation of Motile Cilia. Cell Reports, 2015, 11, 1000-1007.	6.4	23
25	Left–Right Asymmetry: Cilia and Calcium Revisited. Current Biology, 2015, 25, R205-R207.	3.9	12
26	ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles. Data in Brief, 2015, 4, 22-31.	1.0	10
27	Morpholinos: Antisense and Sensibility. Developmental Cell, 2015, 35, 145-149.	7.0	155
28	Symmetry breakage in the frog <i>Xenopus</i> : Role of Rab11 and the ventralâ€right blastomere. Genesis, 2014, 52, 588-599.	1.6	13
29	The evolution and conservation of left-right patterning mechanisms. Development (Cambridge), 2014, 141, 1603-1613.	2.5	141
30	Symmetry breakage in the vertebrate embryo: When does it happen and how does it work?. Developmental Biology, 2014, 393, 109-123.	2.0	84
31	Calponin 2 Acts As an Effector of Noncanonical Wnt-Mediated Cell Polarization during Neural Crest Cell Migration. Cell Reports, 2013, 3, 615-621.	6.4	33
32	Wnt11b Is Involved in Cilia-Mediated Symmetry Breakage during Xenopus Left-Right Development. PLoS ONE, 2013, 8, e73646.	2.5	34
33	<i>Connexin26</i> -mediated transfer of laterality cues in <i>Xenopus</i> . Biology Open, 2012, 1, 473-481.	1.2	18
34	ATP4a Is Required for Wnt-Dependent Foxj1 Expression and Leftward Flow in Xenopus Left-Right Development. Cell Reports, 2012, 1, 516-527.	6.4	73
35	Ciliary and non-ciliary expression and function of PACRGduring vertebrate development. Cilia, 2012, 1, 13.	1.8	11
36	Serotonin Signaling Is Required for Wnt-Dependent GRP Specification and Leftward Flow in Xenopus. Current Biology, 2012, 22, 33-39.	3.9	60

#	Article	IF	CITATION
37	The Nodal Inhibitor Coco Is a Critical Target of Leftward Flow in Xenopus. Current Biology, 2010, 20, 738-743.	3.9	134
38	Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development (Cambridge), 2009, 136, 3019-3030.	2.5	102
39	<i>Xenopus</i> , an ideal model system to study vertebrate leftâ€right asymmetry. Developmental Dynamics, 2009, 238, 1215-1225.	1.8	98
40	Cell Movements at Hensen's Node Establish Left/Right Asymmetric Gene Expression in the Chick. Science, 2009, 324, 941-944.	12.6	157
41	Evolution of leftward flow. Seminars in Cell and Developmental Biology, 2009, 20, 464-471.	5.0	57
42	Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. Developmental Biology, 2009, 331, 281-291.	2.0	74
43	Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation, 2007, 75, 133-146.	1.9	108
44	Cilia-Driven Leftward Flow Determines Laterality in Xenopus. Current Biology, 2007, 17, 60-66.	3.9	245
45	The Ion Channel Polycystin-2 Is Required for Left-Right Axis Determination in Mice. Current Biology, 2002, 12, 938-943.	3.9	401
46	Differential gene expression of Xenopus Pitx1, Pitx2b and Pitx2c during cement gland, stomodeum and pituitary development. Mechanisms of Development, 2001, 107, 191-194.	1.7	43