
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4709475/publications.pdf Version: 2024-02-01

Ρλιλ Ιστηι

#	Article	IF	CITATIONS
1	Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Research, 2009, 19, 24-32.	2.4	587
2	Genome-wide identification of <i>in vivo</i> protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Research, 2008, 36, 5221-5231.	6.5	500
3	An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5187-5191.	3.3	374
4	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	7.2	333
5	Genome-wide Analyses of Transcription Factor GATA3-Mediated Gene Regulation in Distinct T Cell Types. Immunity, 2011, 35, 299-311.	6.6	293
6	esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nature Cell Biology, 2011, 13, 903-913.	4.6	238
7	Interplay between gene expression noise and regulatory network architecture. Trends in Genetics, 2012, 28, 221-232.	2.9	235
8	DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nature Communications, 2015, 6, 6910.	5.8	204
9	DOMINE: a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Research, 2011, 39, D730-D735.	6.5	167
10	Histone-Fold Domain Protein NF-Y Promotes Chromatin Accessibility for Cell Type-Specific Master Transcription Factors. Molecular Cell, 2014, 55, 708-722.	4.5	149
11	INO80 Facilitates Pluripotency Gene Activation in Embryonic Stem Cell Self-Renewal, Reprogramming, and Blastocyst Development. Cell Stem Cell, 2014, 14, 575-591.	5.2	148
12	Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Molecular Systems Biology, 2009, 5, 294.	3.2	146
13	Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO Journal, 2014, 33, 878-889.	3.5	136
14	Chromatin poises miRNA- and protein-coding genes for expression. Genome Research, 2009, 19, 1742-1751.	2.4	135
15	Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Research, 2013, 41, 7286-7301.	6.5	135
16	RORÎ ³ directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Research, 2012, 40, 8519-8535.	6.5	130
17	Co-evolutionary Analysis of Domains in Interacting Proteins Reveals Insights into Domain–Domain Interactions Mediating Protein–Protein Interactions. Journal of Molecular Biology, 2006, 362, 861-875.	2.0	123
18	DOMINE: a database of protein domain interactions. Nucleic Acids Research, 2008, 36, D656-D661.	6.5	122

#	Article	IF	CITATIONS
19	Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Systems, 2019, 8, 427-445.e10.	2.9	111
20	Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells. Nature Immunology, 2011, 12, 129-136.	7.0	91
21	mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Reports, 2016, 17, 29-36.	2.9	88
22	Intragenic Enhancers Attenuate Host Gene Expression. Molecular Cell, 2017, 68, 104-117.e6.	4.5	85
23	Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Research, 2012, 40, 3364-3377.	6.5	84
24	Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood, 2013, 121, 4575-4585.	0.6	78
25	Retinoic Acid-Related Orphan Receptor γ (RORγ): A Novel Participant in the Diurnal Regulation of Hepatic Gluconeogenesis and Insulin Sensitivity. PLoS Genetics, 2014, 10, e1004331.	1.5	76
26	Predicting domain-domain interactions using a parsimony approach. Genome Biology, 2006, 7, R104.	13.9	73
27	Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment. BMC Bioinformatics, 2007, 8, 173.	1.2	71
28	GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood, 2011, 117, 2166-2178.	0.6	69
29	Predicting protein-protein interaction by searching evolutionary tree automorphism space. Bioinformatics, 2005, 21, i241-i250.	1.8	68
30	Cnot1, Cnot2, and Cnot3 Maintain Mouse and Human ESC Identity and Inhibit Extraembryonic Differentiation. Stem Cells, 2012, 30, 910-922.	1.4	63
31	COCO-CL: hierarchical clustering of homology relations based on evolutionary correlations. Bioinformatics, 2006, 22, 779-788.	1.8	61
32	Genome-Wide uH2A Localization Analysis Highlights Bmi1-Dependent Deposition of the Mark at Repressed Genes. PLoS Genetics, 2009, 5, e1000506.	1.5	58
33	NF-Y controls fidelity of transcription initiation at gene promoters through maintenance of the nucleosome-depleted region. Nature Communications, 2019, 10, 3072.	5.8	53
34	Decoding the function of bivalent chromatin in development and cancer. Genome Research, 2021, 31, 2170-2184.	2.4	48
35	GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. Journal of Clinical Investigation, 2017, 127, 4326-4337.	3.9	47
36	Genome-Wide Characterization of Menin-Dependent H3K4me3 Reveals a Specific Role for Menin in the Regulation of Genes Implicated in MEN1-Like Tumors. PLoS ONE, 2012, 7, e37952.	1.1	46

#	Article	IF	CITATIONS
37	Decomposition of overlapping protein complexes: a graph theoretical method for analyzing static and dynamic protein associations. Algorithms for Molecular Biology, 2006, 1, 7.	0.3	43
38	Predicting protein domain interactions from coevolution of conserved regions. Proteins: Structure, Function and Bioinformatics, 2007, 67, 811-820.	1.5	42
39	Approximation algorithms for the capacitated minimum spanning tree problem and its variants in network design. ACM Transactions on Algorithms, 2005, 1, 265-282.	0.9	38
40	ChIP-Seq Data Analysis: Identification of Protein–DNA Binding Sites with SISSRs Peak-Finder. Methods in Molecular Biology, 2012, 802, 305-322.	0.4	38
41	Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data. Bioinformatics, 2016, 32, 252-259.	1.8	34
42	Knowledge-Based Analysis for Detecting Key Signaling Events from Time-Series Phosphoproteomics Data. PLoS Computational Biology, 2015, 11, e1004403.	1.5	32
43	CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports, 2016, 7, 897-910.	2.3	29
44	Approximating the k-traveling repairman problem with repairtimes. Journal of Discrete Algorithms, 2007, 5, 293-303.	0.7	28
45	KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis. Proteomics, 2016, 16, 1868-1871.	1.3	27
46	Integrative framework for identification of key cell identity genes uncovers determinants of ES cell identity and homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1581-90.	3.3	26
47	Critical Requirement of GABPα for Normal T Cell Development. Journal of Biological Chemistry, 2010, 285, 10179-10188.	1.6	25
48	Knowledge-guided inference of domain–domain interactions from incomplete protein–protein interaction networks. Bioinformatics, 2009, 25, 2492-2499.	1.8	24
49	GLIS3 Transcriptionally Activates WNT Genes to Promote Differentiation of Human Embryonic Stem Cells into Posterior Neural Progenitors. Stem Cells, 2019, 37, 202-215.	1.4	21
50	Improved Approximation Algorithms for the Single-Sink Buy-at-Bulk Network Design Problems. Lecture Notes in Computer Science, 2004, , 336-348.	1.0	21
51	Degree-bounded minimum spanning trees. Discrete Applied Mathematics, 2009, 157, 960-970.	0.5	20
52	Transcriptional network dynamics during the progression of pluripotency revealed by integrative statistical learning. Nucleic Acids Research, 2020, 48, 1828-1842.	6.5	14
53	Fine-tuning of epigenetic regulation with respect to promoter CpG content in a cell type-specific manner. Epigenetics, 2014, 9, 747-759.	1.3	11
54	Survivable network design: the capacitated minimum spanning network problem. Information Processing Letters, 2004, 91, 183-190.	0.4	8

#	Article	IF	CITATIONS
55	Approximation Algorithms for the Capacitated Minimum Spanning Tree Problem and Its Variants in Network Design. Lecture Notes in Computer Science, 2004, , 805-818.	1.0	7
56	Minimum Latency Tours and the k-Traveling Repairmen Problem. Lecture Notes in Computer Science, 2004, , 423-433.	1.0	6
57	Improved approximation algorithms for the single-sink buy-at-bulk network design problems. Journal of Discrete Algorithms, 2009, 7, 249-255.	0.7	5
58	Differences in evolutionary pressure acting within highly conserved ortholog groups. BMC Evolutionary Biology, 2008, 8, 208.	3.2	4
59	Computational Approaches to Predict Protein-Protein and Domain-Domain Interactions. , 2007, , 465-491.		3
60	Load-balanced agent activation for value-added network services. Computer Communications, 2006, 29, 1905-1916.	3.1	1