Zeljko Pantic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4708241/publications.pdf

Version: 2024-02-01

567281 2,045 40 15 citations h-index papers

g-index 40 40 40 1512 docs citations times ranked citing authors all docs

794594

19

#	Article	IF	CITATIONS
1	User-centred design, evaluation, and refinement of a wireless power wheelchair charging system. Disability and Rehabilitation: Assistive Technology, 2022, 17, 815-827.	2.2	3
2	Cost-Efficiency Optimization of Ground Assemblies for Dynamic Wireless Charging of Electric Vehicles. IEEE Transactions on Transportation Electrification, 2022, 8, 734-751.	7.8	22
3	EV Misalignment Estimation in DWPT Systems Utilizing the Roadside Charging Pads. IEEE Transactions on Transportation Electrification, 2022, 8, 752-766.	7.8	10
4	Self-Aligning Capability of IPT Pads for High-Power Wireless EV Charging Stations. IEEE Transactions on Industry Applications, 2022, 58, 5593-5601.	4.9	3
5	Review of Wireless Charging Systems for Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering, 2021, 46, 68-87.	3.8	128
6	Minimizing the Rebar Impact on Power Dissipation in Dynamic Wireless Power Transfer Systems. , 2021, , .		1
7	System-Level Approach to Designing a Smart Wireless Charging System for Power Wheelchairs. IEEE Transactions on Industry Applications, 2021, 57, 5128-5144.	4.9	8
8	Dynamic Wireless Charging of Medium Power and Speed Electric Vehicles. IEEE Transactions on Vehicular Technology, 2021, 70, 12552-12566.	6.3	23
9	A Smart Autonomous WPT System for Electric Wheelchair Applications With Free-Positioning Charging Feature. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3516-3532.	5.4	33
10	Advances in High-Power Wireless Charging Systems: Overview and Design Considerations. IEEE Transactions on Transportation Electrification, 2020, 6, 886-919.	7.8	170
11	1-kW Wireless Charger for Power Wheelchairs. , 2020, , .		3
12	DAB-based WPT Charger with Integrated Battery Management System for Fast Charging of Mobility Devices. , 2019, , .		6
13	A Supercapacitor-based Converter Topology for Grid-Side Power Management in Dynamic Wireless Charging Systems. , 2019, , .		7
14	Misalignment Tolerant DWPT Charger for EV Roadways with Integrated Foreign Object Detection and Driver Feedback System. , 2019, , .		10
15	Guest Editorial Special Issue on High-Power Fast Chargers and Wireless Charging. IEEE Transactions on Transportation Electrification, 2019, 5, 858-860.	7.8	0
16	Bidirectional Grid-Side Power Management in DWPT Systems for EV Charging Applications. , 2019, , .		5
17	Analysis, Optimization, and Demonstration of a Vehicular Detection System Intended for Dynamic Wireless Charging Applications. IEEE Transactions on Transportation Electrification, 2019, 5, 147-161.	7.8	76
18	Optimum Design of Decoupled Concentric Coils for Operation in Double-Receiver Wireless Power Transfer Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 1982-1998.	5.4	45

#	Article	IF	Citations
19	Analysis, Design, and Demonstration of a 25-kW Dynamic Wireless Charging System for Roadway Electric Vehicles. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1378-1393.	5.4	200
20	DC Modeling of an LCC Resonant Compensation Network in Wireless Power Transfer Systems. , 2018, , .		4
21	Communication Infrastructure for Dynamic Wireless Charging of Electric Vehicles. , 2017, , .		19
22	Multi-Objective Optimization of Circular Magnetic Couplers for Wireless Power Transfer Applications. IEEE Transactions on Magnetics, 2017, 53, 1-12.	2.1	81
23	Design and optimization of decoupled concentric and coplanar coils for WPT systems. , 2017, , .		14
24	ANN-based algorithm for estimation and compensation of lateral misalignment in dynamic wireless power transfer systems for EV charging. , 2017, , .		10
25	Magnetizable concrete composite materials for road-embedded wireless power transfer pads. , 2017, , .		19
26	Design of a dual-loop controller for in-motion wireless charging of an electric bus., 2016,,.		18
27	Multi-objective particle swarm optimization applied to the design of Wireless Power Transfer systems. , 2015, , .		13
28	A novel position sensorless power transfer control of lumped coil-based in-motion wireless power transfer systems. , 2015 , , .		38
29	Design of Hybrid Energy Storage Systems for Wirelessly Charged Electric Vehicles. , 2015, , .		9
30	Receivers for Multifrequency Wireless Power Transfer: Design for Minimum Interference. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 234-241.	5.4	58
31	Reflexive Field Containment in Dynamic Inductive Power Transfer Systems. IEEE Transactions on Power Electronics, 2014, 29, 4592-4602.	7.9	142
32	Multifrequency Inductive Power Transfer. IEEE Transactions on Power Electronics, 2014, 29, 5995-6005.	7.9	60
33	Computationally-Efficient, Generalized Expressions for the Proximity-Effect in Multi-Layer, Multi-Turn Tubular Coils for Wireless Power Transfer Systems. IEEE Transactions on Magnetics, 2013, 49, 5404-5416.	2.1	43
34	Inductive power transfer by means of multiple frequencies in the magnetic link. , 2013, , .		14
35	Field containment in dynamic wireless charging systems through source-reciever interaction. , 2013, , .		3
36	Cutting the Cord: Static and Dynamic Inductive Wireless Charging of Electric Vehicles. IEEE Electrification Magazine, 2013, 1, 57-64.	1.8	419

ZELJKO PANTIC

#	Article	lF	CITATION
37	ZCS \$LCC\$-Compensated Resonant Inverter for Inductive-Power-Transfer Application. IEEE Transactions on Industrial Electronics, 2011, 58, 3500-3510.	7.9	257
38	New method for current and voltage measuring offset correction in an induction motor sensorless drive. , $2010, \ldots$		0
39	A comparison study of control strategies for ZVS resonant converters. , 2010, , .		25
40	Inductively coupled power transfer for continuously powered electric vehicles., 2009,,.		46