Michael Lisby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4708224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosomeâ€scale assembly and wholeâ€genome sequencing of 266 giant panda roundworms provide insights into their evolution, adaptation and potential drug targets. Molecular Ecology Resources, 2022, 22, 768-785.	2.2	6
2	The chromosomeâ€scale genomes of <i>Dipterocarpus turbinatus</i> and <i>Hopea hainanensis</i> (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation. Plant Biotechnology Journal, 2022, 20, 538-553.	4.1	21
3	Genomes shed light on the evolution of <i>Begonia</i> , a megaâ€diverse genus. New Phytologist, 2022, 234, 295-310.	3.5	18
4	Telomeric Câ€circles localize at nuclear pore complexes in <i>Saccharomyces cerevisiae</i> . EMBO Journal, 2022, 41, e108736.	3.5	7
5	SCAI promotes errorâ€free repair of DNA interstrand crosslinks via the Fanconi anemia pathway. EMBO Reports, 2022, 23, e53639.	2.0	12
6	The Cycas genome and the early evolution of seed plants. Nature Plants, 2022, 8, 389-401.	4.7	80
7	Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell, 2022, 185, 1777-1792.e21.	13.5	437
8	Functions of TopBP1 in preserving genome integrity during mitosis. Seminars in Cell and Developmental Biology, 2021, 113, 57-64.	2.3	26
9	The Rad51 paralog complex Rad55-Rad57 acts as a molecular chaperone during homologous recombination. Molecular Cell, 2021, 81, 1043-1057.e8.	4.5	45
10	Rad52 SUMOylation functions as a molecular switch that determines a balance between the Rad51- and Rad59-dependent survivors. IScience, 2021, 24, 102231.	1.9	12
11	Topoisomerase II deficiency leads to a postreplicative structural shift in all Saccharomyces cerevisiae chromosomes. Scientific Reports, 2021, 11, 14940.	1.6	2
12	A complex of BRCA2 and PP2A-B56 is required for DNA repair by homologous recombination. Nature Communications, 2021, 12, 5748.	5.8	24
13	The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway. Genomics, 2021, 113, 3696-3704.	1.3	11
14	DNA Double-Strand Break-Induced Gene Amplification in Yeast. Methods in Molecular Biology, 2021, 2153, 239-252.	0.4	1
15	Ethanol exposure increases mutation rate through error-prone polymerases. Nature Communications, 2020, 11, 3664.	5.8	29
16	Protocol for Purification of Human ZGRF1 and Its Regulatory Function on RAD51-Mediated D-Loop Formation. STAR Protocols, 2020, 1, 100099.	0.5	0
17	The ZGRF1 Helicase Promotes Recombinational Repair of Replication-Blocking DNA Damage in Human Cells. Cell Reports, 2020, 32, 107849.	2.9	9
18	A distinct role for recombination repair factors in an early cellular response to transcription–replication conflicts. Nucleic Acids Research, 2020, 48, 5467-5484.	6.5	23

#	Article	IF	CITATIONS
19	Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation. PLoS Genetics, 2020, 16, e1009187.	1.5	16
20	The FANCM family Mph1 helicase localizes to the mitochondria and contributes to mtDNA stability. DNA Repair, 2019, 82, 102684.	1.3	5
21	Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial Cell, 2019, 6, 1-64.	1.4	47
22	Esc2 promotes telomere stability in response to DNA replication stress. Nucleic Acids Research, 2019, 47, 4597-4611.	6.5	6
23	Quantitative sensing and signalling of single-stranded DNA during the DNA damage response. Nature Communications, 2019, 10, 944.	5.8	44
24	Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2. Current Genetics, 2018, 64, 697-712.	0.8	24
25	Regulation of Hed1 and Rad54 binding during maturation of the meiosisâ€specific presynaptic complex. EMBO Journal, 2018, 37, .	3.5	33
26	FANCD2 binding identifies conserved fragile sites at large transcribed genes in avian cells. Nucleic Acids Research, 2018, 46, 1280-1294.	6.5	43
27	A Critical Role for Dna2 at Unwound Telomeres. Genetics, 2018, 209, 129-141.	1.2	12
28	Imaging of DNA Ultrafine Bridges in Budding Yeast. Methods in Molecular Biology, 2018, 1672, 483-493.	0.4	1
29	Regulation of telomere metabolism by the RNA processing protein Xrn1. Nucleic Acids Research, 2017, 45, 3860-3874.	6.5	6
30	Genome-Scale Genetic Interactions and Cell Imaging Confirm Cytokinesis as Deleterious to Transient Topoisomerase II Deficiency in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2017, 7, 3379-3391.	0.8	8
31	Transcription-replication conflicts at chromosomal fragile sites—consequences in M phase and beyond. Chromosoma, 2017, 126, 213-222.	1.0	17
32	Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains. Nucleic Acids Research, 2017, 45, 215-230.	6.5	26
33	Editorial: 3Rs tightly intertwined to maintain genome stability. FEMS Yeast Research, 2017, 17, fox003.	1.1	1
34	The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genetics, 2017, 13, e1007136.	1.5	47
35	SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination. Cell Reports, 2016, 15, 1242-1253.	2.9	79
36	Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. Journal of Biological Chemistry, 2016, 291, 7594-7607.	1.6	19

#	Article	IF	CITATIONS
37	TopBP1 makes the final call for repair on the verge of cell division. Molecular and Cellular Oncology, 2016, 3, e1093066.	0.3	2
38	The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line. DNA Repair, 2016, 40, 67-76.	1.3	20
39	SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair, 2016, 42, 11-25.	1.3	9
40	TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. Journal of Cell Biology, 2016, 212, 281-288.	2.3	70
41	Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes and Development, 2016, 30, 700-717.	2.7	27
42	TopBP1-mediated DNA processing during mitosis. Cell Cycle, 2016, 15, 176-183.	1.3	21
43	Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex. BioEssays, 2015, 37, 1287-1292.	1.2	40
44	Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination. PLoS Genetics, 2015, 11, e1005697.	1.5	15
45	Srs2 promotes Mus81–Mms4-mediated resolution of recombination intermediates. Nucleic Acids Research, 2015, 43, 3626-3642.	6.5	21
46	Compartmentâ€specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO Journal, 2015, 34, 778-797.	3.5	243
47	Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nature Communications, 2015, 6, 6533.	5.8	80
48	Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p. Nature Communications, 2015, 6, 7726.	5.8	47
49	Cell Biology of Mitotic Recombination. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016535.	2.3	54
50	TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells. Journal of Cell Biology, 2015, 210, 565-582.	2.3	82
51	Cell cycle regulation of homologous recombination in <i>Saccharomyces cerevisiae</i> . FEMS Microbiology Reviews, 2014, 38, 172-184.	3.9	65
52	Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Research, 2014, 42, 3648-3665.	6.5	63
53	DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families. Nucleic Acids Research, 2014, 42, 2270-2281.	6.5	36
54	Genetic Basis for <i>Saccharomyces cerevisiae</i> Biofilm in Liquid Medium. G3: Genes, Genomes, Genetics, 2014, 4, 1671-1680.	0.8	36

#	Article	IF	CITATIONS
55	TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability. Journal of Cell Biology, 2014, 204, 45-59.	2.3	93
56	Mechanisms and Regulation of Mitotic Recombination in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 198, 795-835.	1.2	313
57	A cell cycle-regulated Slx4–Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication. Genes and Development, 2014, 28, 1604-1619.	2.7	79
58	Physical mapping and cloning of RAD56. Gene, 2013, 519, 182-186.	1.0	3
59	RPA Coordinates DNA End Resection and Prevents Formation of DNA Hairpins. Molecular Cell, 2013, 50, 589-600.	4.5	225
60	MRX protects fork integrity at protein–DNA barriers, and its absence causes checkpoint activation dependent on chromatin context. Nucleic Acids Research, 2013, 41, 3173-3189.	6.5	17
61	The PCNA Interaction Protein Box Sequence in Rad54 Is an Integral Part of Its ATPase Domain and Is Required for Efficient DNA Repair and Recombination. PLoS ONE, 2013, 8, e82630.	1.1	9
62	Histone H3 Lysine 56 Acetylation and the Response to DNA Replication Fork Damage. Molecular and Cellular Biology, 2012, 32, 154-172.	1.1	77
63	Proteome-wide Analysis of Lysine Acetylation Suggests its Broad Regulatory Scope in Saccharomyces cerevisiae. Molecular and Cellular Proteomics, 2012, 11, 1510-1522.	2.5	255
64	RNF8 and RNF168 but not HERC2 are required for DNA damage-induced ubiquitylation in chicken DT40 cells. DNA Repair, 2012, 11, 892-905.	1.3	22
65	Live Cell Microscopy of DNA Damage Response in Saccharomyces cerevisiae. Methods in Molecular Biology, 2012, 920, 433-443.	0.4	20
66	Optimization of ordered plasmid assembly by gap repair in <i>Saccharomyces cerevisiae</i> . Yeast, 2012, 29, 323-334.	0.8	36
67	Cell Biology of Homologous Recombination in Yeast. Methods in Molecular Biology, 2011, 745, 523-536.	0.4	30
68	Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 713, 64-75.	0.4	11
69	Dpb11/TopBP1 plays distinct roles in DNA replication, checkpoint response and homologous recombination. DNA Repair, 2011, 10, 210-224.	1.3	34
70	Bringing Rad52 foci into focus. Journal of Cell Biology, 2011, 194, 665-667.	2.3	13
71	The rad52-Y66A allele alters the choice of donor template during spontaneous chromosomal recombination. DNA Repair, 2010, 9, 23-32.	1.3	7
72	Regulation of homologous recombination at telomeres in budding yeast. FEBS Letters, 2010, 584, 3696-3702.	1.3	14

#	Article	IF	CITATIONS
73	The Transcription Elongation Factor Bur1-Bur2 Interacts with Replication Protein A and Maintains Genome Stability during Replication Stress. Journal of Biological Chemistry, 2010, 285, 41665-41674.	1.6	18
74	The fate of irreparable DNA double-strand breaks and eroded telomeres at the nuclear periphery. Nucleus, 2010, 1, 158-161.	0.6	7
75	Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Research, 2010, 38, 4708-4721.	6.5	85
76	Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the <i>GAP1</i> locus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18551-18556.	3.3	135
77	The fate of irreparable DNA double-strand breaks and eroded telomeres at the nuclear periphery. Nucleus, 2010, 1, 158-161.	0.6	5
78	Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. Journal of Cell Biology, 2009, 185, 969-981.	2.3	72
79	Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae. Nucleic Acids Research, 2009, 37, 6429-6438.	6.5	10
80	Rad52. Current Biology, 2009, 19, R676-R677.	1.8	80
81	Regulation of rDNA stability by sumoylation. DNA Repair, 2009, 8, 507-516.	1.3	19
82	Choreography of recombination proteins during the DNA damage response. DNA Repair, 2009, 8, 1068-1076.	1.3	103
83	The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biology, 2009, 11, 980-987.	4.6	191
84	A two-step model for senescence triggered by a single critically short telomere. Nature Cell Biology, 2009, 11, 988-993.	4.6	151
85	A Flp-nick system to study repair of a single protein-bound nick in vivo. Nature Methods, 2009, 6, 753-757.	9.0	52
86	DNA damage response to eroded telomeres. Cell Cycle, 2009, 8, 3617-3618.	1.3	7
87	Compensatory role for Rad52 during recombinational repair in <i>Ustilago maydis</i> . Molecular Microbiology, 2008, 67, 1156-1168.	1.2	28
88	Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae. DNA Repair, 2008, 7, 57-66.	1.3	18
89	Differential Regulation of the Cellular Response to DNA Double-Strand Breaks in G1. Molecular Cell, 2008, 30, 73-85.	4.5	149
90	Genome-Wide Analysis of Rad52 Foci Reveals Diverse Mechanisms Impacting Recombination. PLoS Genetics, 2007, 3, e228.	1.5	176

#	Article	IF	CITATIONS
91	Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses. Science, 2007, 315, 1411-1415.	6.0	121
92	The Slx5-Slx8 Complex Affects Sumoylation of DNA Repair Proteins and Negatively Regulates Recombination. Molecular and Cellular Biology, 2007, 27, 6153-6162.	1.1	124
93	Dss1 Interaction with Brh2 as a Regulatory Mechanism for Recombinational Repair. Molecular and Cellular Biology, 2007, 27, 2512-2526.	1.1	40
94	The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biology, 2007, 9, 923-931.	4.6	345
95	Rad52 and Rad59 exhibit both overlapping and distinct functions. DNA Repair, 2007, 6, 27-37.	1.3	34
96	The cell biology of mitotic recombination in Saccharomyces cerevisiae. Topics in Current Genetics, 2007, , 317-333.	0.7	1
97	Systematic hybrid LOH: a new method to reduce false positives and negatives during screening of yeast gene deletion libraries. Yeast, 2006, 23, 1097-1106.	0.8	27
98	Multiple start codons and phosphorylation result in discrete Rad52 protein species. Nucleic Acids Research, 2006, 34, 2587-2597.	6.5	38
99	The Role of DNA Double-Strand Breaks in Spontaneous Homologous Recombination in S. cerevisiae. PLoS Genetics, 2006, 2, e194.	1.5	82
100	Rec2 Interplay with both Brh2 and Rad51 Balances Recombinational Repair in Ustilago maydis. Molecular and Cellular Biology, 2006, 26, 678-688.	1.1	20
101	The Cell Biology of Mitotic Recombination in Saccharomyces Cerevisiae. , 2006, , 317-333.		0
102	Brh2-Dss1 Interplay Enables Properly Controlled Recombination in Ustilago maydis. Molecular and Cellular Biology, 2005, 25, 2547-2557.	1.1	59
103	Localization of checkpoint and repair proteins in eukaryotes. Biochimie, 2005, 87, 579-589.	1.3	59
104	DNA Repair: Keeping It Together. Current Biology, 2004, 14, R994-R996.	1.8	40
105	DNA damage checkpoint and repair centers. Current Opinion in Cell Biology, 2004, 16, 328-334.	2.6	138
106	Choreography of the DNA Damage Response. Cell, 2004, 118, 699-713.	13.5	829
107	Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biology, 2003, 5, 572-577.	4.6	388
108	Cell Cycle-Regulated Centers of DNA Double-Strand Break Repair. Cell Cycle, 2003, 2, 477-481.	1.3	53

#	Article	IF	CITATIONS
109	Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle, 2003, 2, 479-83.	1.3	36
110	Cloning-free genome alterations in saccharomyces cereuisiae using adaptamer-mediated PCR. Methods in Enzymology, 2002, 350, 258-277.	0.4	91
111	Residues within the N-terminal Domain of Human Topoisomerase I Play a Direct Role in Relaxation*. Journal of Biological Chemistry, 2001, 276, 20220-20227.	1.6	49
112	Inhibition of Flp Recombinase by the Topoisomerase I-targeting Drugs, Camptothecin and NSC-314622. Journal of Biological Chemistry, 2001, 276, 6993-6997.	1.6	1
113	Rad52 forms DNA repair and recombination centers during S phase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8276-8282.	3.3	409
114	Camptothecins Inhibit the Utilization of Hydrogen Peroxide in the Ligation Step of Topoisomerase I Catalysisâ€. Biochemistry, 1998, 37, 10815-10827.	1.2	39
115	The RNA-splicing Factor PSF/p54 Controls DNA-Topoisomerase I Activity by a Direct Interaction. Journal of Biological Chemistry, 1998, 273, 26261-26264.	1.6	82
116	Alcoholysis and Strand Joining by the Flp Site-specific Recombinase. Journal of Biological Chemistry, 1998, 273, 22028-22036.	1.6	5