Xiaoji Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4708036/publications.pdf

Version: 2024-02-01

		61945	45285
89	9,319	43	90
papers	citations	h-index	g-index
95	95	95	11728
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561, 88-93.	13.7	1,274
2	Intracellular Glutathione Detection Using MnO ₂ -Nanosheet-Modified Upconversion Nanoparticles. Journal of the American Chemical Society, 2011, 133, 20168-20171.	6.6	845
3	Mechanistic Investigation of Photon Upconversion in Nd ³⁺ -Sensitized Core–Shell Nanoparticles. Journal of the American Chemical Society, 2013, 135, 12608-12611.	6.6	682
4	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	7.3	557
5	Enhancing Luminescence in Lanthanideâ€Doped Upconversion Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 11702-11715.	7.2	514
6	The Effect of Surface Coating on Energy Migration-Mediated Upconversion. Journal of the American Chemical Society, 2012, 134, 20849-20857.	6.6	405
7	Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nature Nanotechnology, 2016, 11, 851-856.	15.6	292
8	Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nature Communications, 2017, 8, 899.	5.8	290
9	Confining Excitation Energy in Er ³⁺ â€Sensitized Upconversion Nanocrystals through Tm ³⁺ â€Mediated Transient Energy Trapping. Angewandte Chemie - International Edition, 2017, 56, 7605-7609.	7.2	259
10	Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nature Photonics, 2021, 15, 187-192.	15.6	237
11	Inherently Eu ²⁺ /Eu ³⁺ Codoped Sc ₂ O ₃ Nanoparticles asÂHighâ€Performance Nanothermometers. Advanced Materials, 2018, 30, e1705256.	11.1	203
12	Black Phosphorus Nanosheets Immobilizing Ce6 for Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12431-12440.	4.0	201
13	Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery. Advanced Materials, 2017, 29, 1700244.	11.1	186
14	Upconversion goes broadband. Nature Materials, 2012, 11, 842-843.	13.3	165
15	Improving Colorimetric Assays through Protein Enzyme-Assisted Gold Nanoparticle Amplification. Accounts of Chemical Research, 2012, 45, 1511-1520.	7.6	154
16	Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach. Scientific Reports, 2015, 5, 10923.	1.6	151
17	Ultrasensitive Colorimetric DNA Detection using a Combination of Rolling Circle Amplification and Nicking Endonucleaseâ€Assisted Nanoparticle Amplification (NEANA). Small, 2012, 8, 1846-1850.	5.2	110
18	Er ³⁺ Sensitized Photon Upconversion Nanocrystals. Advanced Functional Materials, 2018, 28, 1800208.	7.8	108

#	Article	IF	Citations
19	Highly Waterâ€Stable Lanthanide–Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence. Advanced Materials, 2017, 29, 1701804.	11.1	106
20	Reduced-Dimensional Perovskite Enabled by Organic Diamine for Efficient Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 2349-2356.	2.1	104
21	Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy, 2017, 32, 382-388.	8.2	98
22	Emerging â‰^800 nm Excited Lanthanideâ€Doped Upconversion Nanoparticles. Small, 2017, 13, 1602843.	5.2	92
23	Intracellular Adenosine Triphosphate Deprivation through Lanthanide-Doped Nanoparticles. Journal of the American Chemical Society, 2015, 137, 6550-6558.	6.6	88
24	Paving Metal–Organic Frameworks with Upconversion Nanoparticles via Self-Assembly. Journal of the American Chemical Society, 2018, 140, 15507-15515.	6.6	85
25	Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 847-853.	4.0	84
26	Tuning hexagonal NaYbF ₄ nanocrystals down to sub-10 nm for enhanced photon upconversion. Nanoscale, 2017, 9, 13739-13746.	2.8	78
27	Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification. Nanomaterials, 2015, 5, 1-25.	1.9	72
28	From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots. Small, 2017, 13, 1601001.	5.2	69
29	Controllable co-assembly of organic micro/nano heterostructures from fluorescent and phosphorescent molecules for dual anti-counterfeiting. Materials Horizons, 2019, 6, 984-989.	6.4	68
30	A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C–S coupling. Chemical Science, 2012, 3, 2388.	3.7	67
31	Colorimetric Detection of HIVâ€1 Ribonuclease H Activity by Gold Nanoparticles. Small, 2011, 7, 1393-1396.	5.2	65
32	Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution. Nanoscale, 2016, 8, 6666-6673.	2.8	65
33	Energy Migration Upconversion in Manganese(II)â€Doped Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 13312-13317.	7.2	64
34	The Sources of Reactive Oxygen Species and Its Possible Role in the Pathogenesis of Parkinson's Disease. Parkinson's Disease, 2018, 2018, 1-9.	0.6	60
35	Platinum nanoenzyme functionalized black phosphorus nanosheets for photothermal and enhanced-photodynamic therapy. Chemical Engineering Journal, 2021, 409, 127381.	6.6	59
36	Templating C ₆₀ on MoS ₂ Nanosheets for 2D Hybrid van der Waals <i>p</i> â€" <i>n</i> Nanoheterojunctions. Chemistry of Materials, 2016, 28, 4300-4306.	3.2	58

#	Article	IF	Citations
37	D-A-D structured selenadiazolesbenzothiadiazole-based near-infrared dye for enhanced photoacoustic imaging and photothermal cancer therapy. Chinese Chemical Letters, 2021, 32, 1580-1585.	4.8	58
38	Confining Excitation Energy in Er ³⁺ â€Sensitized Upconversion Nanocrystals through Tm ³⁺ â€Mediated Transient Energy Trapping. Angewandte Chemie, 2017, 129, 7713-7717.	1.6	56
39	Dual-Signal Luminescent Detection of Dopamine by a Single Type of Lanthanide-Doped Nanoparticles. ACS Sensors, 2018, 3, 1683-1689.	4.0	56
40	Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Research, 2020, 13, 729-735.	5.8	56
41	Chemical Vapor Transport Reactions for Synthesizing Layered Materials and Their 2D Counterparts. Small, 2019, 15, e1804404.	5.2	52
42	A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Materials Horizons, 2021, 8, 1264-1271.	6.4	51
43	Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy, 2019, 65, 104050.	8.2	44
44	Insights into Li ⁺ -induced morphology evolution and upconversion luminescence enhancement of KSc ₂ F ₇ :Yb/Er nanocrystals. Journal of Materials Chemistry C, 2017, 5, 3503-3508.	2.7	42
45	Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries. Journal of Power Sources, 2018, 384, 27-33.	4.0	42
46	Revisiting the Growth of Black Phosphorus in Sn-I Assisted Reactions. Frontiers in Chemistry, 2019, 7, 21.	1.8	41
47	Copper diphosphonates with zero-, one- and two-dimensional structures: ferrimagnetism in layer compound Cu3(ImhedpH)2·2H2O [ImhedpH4 = (1-C3H3N2)CH2C(OH)(PO3H2)2]. Dalton Transactions, 2008, , 5008.	1.6	40
48	Solutionâ€Processable Nearâ€Infrared–Responsive Composite of Perovskite Nanowires and Photonâ€Upconversion Nanoparticles. Advanced Functional Materials, 2018, 28, 1801782.	7.8	40
49	Hedgehogâ€Like Upconversion Crystals: Controlled Growth and Molecular Sensing at Singleâ€Particle Level. Advanced Materials, 2017, 29, 1702315.	11.1	38
50	Comprehensive studies of the Li ⁺ effect on NaYF ₄ :Yb/Er nanocrystals: morphology, structure, and upconversion luminescence. Dalton Transactions, 2017, 46, 8968-8974.	1.6	37
51	Ultrafast Cathodic Exfoliation of Few-Layer Black Phosphorus in Aqueous Solution. ACS Applied Nano Materials, 2019, 2, 3793-3801.	2.4	35
52	Designing Upconversion Nanocrystals Capable of 745â€nm Sensitization and 803â€nm Emission for Deepâ€√issue Imaging. Chemistry - A European Journal, 2016, 22, 10801-10807.	1.7	34
53	EcoRlâ€Modified Gold Nanoparticles for Dualâ€Mode Colorimetric Detection of Magnesium and Pyrophosphate lons. Small, 2011, 7, 1987-1992.	5 . 2	32
54	Plasmonâ€Enhanced Blue Upconversion Luminescence by Indium Nanocrystals. Advanced Functional Materials, 2019, 29, 1901242.	7.8	32

#	Article	IF	Citations
55	From ScOOH to Sc ₂ O ₃ : Phase Control, Luminescent Properties, and Applications. Advanced Materials, 2016, 28, 6665-6671.	11.1	31
56	Lanthanide Stabilized All-Inorganic CsPbl ₂ Br Perovskite Solar Cells with Superior Thermal Resistance. ACS Applied Energy Materials, 2021, 4, 3937-3944.	2.5	29
57	Improving the Performance of Microbial Fuel Cells through Anode Manipulation. ChemPlusChem, 2015, 80, 1216-1225.	1.3	28
58	Sc ³⁺ -induced morphology, phase structure, and upconversion luminescence evolution of YF ₃ :Yb/Er nanocrystals. Journal of Materials Chemistry C, 2017, 5, 6450-6456.	2.7	26
59	Packed anode derived from cocklebur fruit for improving long-term performance of microbial fuel cells. Science China Materials, 2019, 62, 645-652.	3.5	26
60	Controlled Synthesis, Evolution Mechanisms, and Luminescent Properties of ScF $<$ sub $<$ i $>x<$ /i $><$ /sub $>$:Ln ($<$ i $>x<$ /i $>=$ 2.76, 3) Nanocrystals. Chemistry of Materials, 2017, 29, 9758-9766.	3.2	22
61	Perovskite Oxides for Cathodic Electrocatalysis of Energyâ€Related Gases: From O ₂ to CO ₂ and N ₂ . Advanced Functional Materials, 2021, 31, 2101872.	7.8	21
62	Selective synthesis of LaF ₃ and NaLaF ₄ nanocrystals via lanthanide ion doping. Journal of Materials Chemistry C, 2017, 5, 9188-9193.	2.7	20
63	Physical Manipulation of Lanthanideâ€Activated Photoluminescence. Annalen Der Physik, 2019, 531, 1900026.	0.9	20
64	Approaching an adjustable organic thermochromic luminophore library <i>via</i> the synergistic effects between structure-related molecular dynamics and aggregation-related luminescence. Journal of Materials Chemistry C, 2020, 8, 8430-8439.	2.7	18
65	Surfactant effect on and luminescence tuning of lanthanide-doped ScPO4·2H2O microparticles. Journal of Materials Chemistry C, 2015, 3, 12385-12389.	2.7	16
66	Accelerating the startup of microbial fuel cells by facile microbial acclimation. Bioresource Technology Reports, 2019, 8, 100347.	1.5	16
67	<i>In situ</i> exsolved Co components on wood ear-derived porous carbon for catalyzing oxygen reduction over a wide pH range. Journal of Materials Chemistry A, 2021, 9, 10695-10703.	5.2	16
68	Iridium-lanthanide complexes: Structures, properties and applications. Coordination Chemistry Reviews, 2022, 456, 214367.	9.5	14
69	Insights into the growth mechanism of REF ₃ (RE = La–Lu, Y) nanocrystals: hexagonal and/or orthorhombic. Nanoscale, 2017, 9, 15974-15981.	2.8	13
70	Templatedâ€Construction of Hollow MoS ₂ Architectures with Improved Photoresponses. Advanced Science, 2020, 7, 2002444.	5.6	13
71	Multiplexed Biomolecular Arrays Generated via Parallel Dip-Pen Nanolithography. ACS Applied Materials & Dip-Pen Nanolithography. ACS Ap	4.0	12
72	Nanocomposites of carbon nanotubes and photon upconversion nanoparticles for enhanced optical limiting performance. Journal of Materials Chemistry C, 2018, 6, 7311-7316.	2.7	11

#	Article	IF	CITATIONS
73	Colorimetric anticancer drug detection by gold nanoparticle-based DNA interstrand cross-linking. Analytical Methods, 2013, 5, 1116.	1.3	10
74	Interconversion between KSc ₂ F ₇ :Yb/Er and K ₂ NaScF ₆ :Yb/Er nanocrystals: the role of chemistry. Dalton Transactions, 2018, 47, 4950-4958.	1.6	10
75	Plasmonic bimetallic nanodisk arrays for DNA conformation sensing. Nanoscale, 2019, 11, 19291-19296.	2.8	10
76	Synthesis and luminescent properties of lanthanide-doped ScVO 4 microcrystals. Journal of Rare Earths, 2017, 35, 28-33.	2.5	9
77	Organic Linkers Enable Tunable Transfer of Migrated Energy from Upconversion Nanoparticles. ACS Applied Materials & Description (1988)	4.0	9
78	Uranyl phosphonates: crystalline materials and nanosheets for temperature sensing. Dalton Transactions, 2021, 50, 17129-17139.	1.6	9
79	Stirring revealed new functions of ethylenediamine and hydrazine in the morphology control of copper nanowires. Nanoscale, 2019, 11, 11902-11909.	2.8	8
80	A luminescent view of the clickable assembly of LnF3 nanoclusters. Nature Communications, $2021,12,2948.$	5.8	6
81	Efficient Synthesis of All-Aryl Phenazasilines for Optoelectronic Applications. Australian Journal of Chemistry, 2016, 69, 419.	0.5	5
82	Graphene: From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots (Small $18/2017$). Small, $2017, 13, .$	5.2	3
83	Ligand-displacement-based two-photon fluorogenic probe for visualizing mercapto biomolecules in live cells, $\langle i \rangle$ Drosophila $\langle i \rangle$ brains and zebrafish. Analyst, The, 2018, 143, 3433-3441.	1.7	3
84	Carbon nanofiber-based catalysts derived from polyacrylonitrile for efficient oxygen reduction in alkaline and neutral Zn-air batteries. Materials Chemistry Frontiers, $0, \cdot, \cdot$	3.2	3
85	Pressure-induced phase transitions in weak interlayer coupling CdPS3. Applied Physics Letters, 2022, 120, .	1.5	3
86	Surface-controlled preparation of EuWO4(OH) nanobelts and their hybrid with Au nanoparticles as a novel enzyme-free sensing platform towards hydrogen peroxide. Chemical Communications, 2017, 53, 5063-5066.	2.2	2
87	Gold Nanoparticles: Colorimetric Detection of HIV-1 Ribonuclease H Activity by Gold Nanoparticles (Small 10/2011). Small, 2011, 7, 1392-1392.	5.2	0
88	Frontispiece: Improving the Performance of Microbial Fuel Cells through Anode Manipulation. ChemPlusChem, 2015, 80, n/a-n/a.	1.3	0
89	Upconversion Nanoparticles: Emerging â‰^800 nm Excited Lanthanideâ€Doped Upconversion Nanoparticles (Small 6/2017). Small, 2017, 13, .	5.2	0