List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4708/publications.pdf Version: 2024-02-01

ΖΗΛΝΙΙΝ

#	Article	IF	CITATIONS
1	Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2682.	15.6	2,057
2	Hierarchical NiCo ₂ O ₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water‧plitting. Angewandte Chemie - International Edition, 2016, 55, 6290-6294.	7.2	722
3	Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chemical Reviews, 2018, 118, 8936-8982.	23.0	575
4	Hierarchical NiCo ₂ O ₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water‣plitting. Angewandte Chemie, 2016, 128, 6398-6402.	1.6	536
5	Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nature Communications, 2017, 8, 14628.	5.8	436
6	Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy and Environmental Science, 2019, 12, 1512-1533.	15.6	402
7	Phosphorous Pentasulfide as a Novel Additive for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2013, 23, 1064-1069.	7.8	397
8	Lithium–sulfur batteries: from liquid to solid cells. Journal of Materials Chemistry A, 2015, 3, 936-958.	5.2	343
9	Lithium Superionic Sulfide Cathode for All-Solid Lithium–Sulfur Batteries. ACS Nano, 2013, 7, 2829-2833.	7.3	333
10	Air-stable, high-conduction solid electrolytes of arsenic-substituted Li ₄ SnS ₄ . Energy and Environmental Science, 2014, 7, 1053-1058.	15.6	326
11	Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy and Environmental Science, 2017, 10, 750-755.	15.6	286
12	Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nature Energy, 2021, 6, 378-387.	19.8	282
13	Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials, 2018, 10, 139-159.	9.5	267
14	Lithium Polysulfidophosphates: A Family of Lithium onducting Sulfurâ€Rich Compounds for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2013, 52, 7460-7463.	7.2	263
15	Durable Carbon-Coated Li ₂ S Core–Shell Spheres for High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society, 2014, 136, 4659-4663.	6.6	248
16	Dualâ€Function Electrolyte Additive for Highly Reversible Zn Anode. Advanced Energy Materials, 2021, 11, 2102010.	10.2	246
17	Aligning academia and industry for unified battery performance metrics. Nature Communications, 2018, 9, 5262.	5.8	244
18	Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon, 2009, 47, 3346-3354.	5.4	226

#	Article	IF	CITATIONS
19	<i>Acacia Senegal</i> –Inspired Bifunctional Binder for Longevity of Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500878.	10.2	223
20	Silicon Anode with High Initial Coulombic Efficiency by Modulated Trifunctional Binder for Highâ€Arealâ€Capacity Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1903110.	10.2	221
21	α-Fe ₂ O ₃ Nanoparticle-Loaded Carbon Nanofibers as Stable and High-Capacity Anodes for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 2672-2679.	4.0	194
22	Hierarchical tubular structures constructed from ultrathin TiO ₂ (B) nanosheets for highly reversible lithium storage. Energy and Environmental Science, 2015, 8, 1480-1483.	15.6	183
23	Interweaving 3D Network Binder for Highâ€Arealâ€Capacity Si Anode through Combined Hard and Soft Polymers. Advanced Energy Materials, 2019, 9, 1802645.	10.2	181
24	An Ultraâ€Longâ€Life Lithiumâ€Rich Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ Cathode by Threeâ€inâ€One Surface Modification for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 7778-7782.	7.2	164
25	Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2011, 3, 2534-2542.	4.0	156
26	Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. Journal of Power Sources, 2010, 195, 2050-2056.	4.0	154
27	Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. Journal of Power Sources, 2011, 196, 436-441.	4.0	137
28	Carbon Nanotube-Loaded Electrospun LiFePO ₄ /Carbon Composite Nanofibers As Stable and Binder-Free Cathodes for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 1273-1280.	4.0	126
29	Hierarchical Tubular Structures Composed of Mnâ€Based Mixed Metal Oxide Nanoflakes with Enhanced Electrochemical Properties. Advanced Functional Materials, 2015, 25, 5184-5189.	7.8	124
30	Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. Journal of Power Sources, 2011, 196, 7692-7699.	4.0	107
31	Accurate Control of Initial Coulombic Efficiency for Lithiumâ€rich Manganeseâ€based Layered Oxides by Surface Multicomponent Integration. Angewandte Chemie - International Edition, 2020, 59, 23061-23066.	7.2	107
32	Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution. Nano Energy, 2019, 63, 103849.	8.2	106
33	Integrating Conductivity, Immobility, and Catalytic Ability into Highâ€N Carbon/Graphene Sheets as an Effective Sulfur Host. Advanced Materials, 2020, 32, e1906357.	11.1	102
34	Towards efficient binders for silicon based lithium-ion battery anodes. Chemical Engineering Journal, 2021, 406, 126807.	6.6	99
35	Polyiodide Confinement by Starch Enables Shuttleâ€Free Zn–Iodine Batteries. Advanced Materials, 2022, 34, e2201716.	11.1	98
36	Yolk-shell-structured zinc-cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage. Nano Energy, 2019, 64, 103899.	8.2	93

#	Article	IF	CITATIONS
37	Ni0.85Se as an efficient non-noble bifunctional electrocatalyst for full water splitting. International Journal of Hydrogen Energy, 2016, 41, 10688-10694.	3.8	92
38	High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Research, 2018, 11, 490-498.	5.8	92
39	In-Situ Polymerized Binder: A Three-in-One Design Strategy for All-Integrated SiO <i>_{<i>x</i>}</i> Anode with High Mass Loading in Lithium Ion Batteries. ACS Energy Letters, 2021, 6, 290-297.	8.8	92
40	Ni/SiO2/Graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries. Nano Energy, 2020, 76, 105033.	8.2	90
41	Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. Journal of Power Sources, 2010, 195, 5025-5031.	4.0	89
42	Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon, 2013, 51, 185-194.	5.4	88
43	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87
44	Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators. Electrochimica Acta, 2011, 56, 6474-6480.	2.6	86
45	A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries. Nano Energy, 2021, 79, 105430.	8.2	85
46	In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38159-38164.	4.0	83
47	Boosting oxygen evolution activity of NiFe-LDH using oxygen vacancies and morphological engineering. Journal of Materials Chemistry A, 2021, 9, 23697-23702.	5.2	83
48	Ni–Co sulfide nanoboxes with tunable compositions for high-performance electrochemical pseudocapacitors. Journal of Materials Chemistry A, 2016, 4, 10248-10253.	5.2	81
49	A robust network binder with dual functions of Cu ²⁺ ions as ionic crosslinking and chemical binding agents for highly stable Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 7382-7388.	5.2	81
50	Inâ€Situ Encapsulation of Nickel Particles in Electrospun Carbon Nanofibers and the Resultant Electrochemical Performance. Chemistry - A European Journal, 2009, 15, 10718-10722.	1.7	80
51	Metal-organic framework nanosheets-guided uniform lithium deposition for metallic lithium batteries. Energy Storage Materials, 2018, 11, 267-273.	9.5	80
52	Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nature Communications, 2019, 10, 1965.	5.8	77
53	Assembly of Carbon–SnO ₂ Core–Sheath Composite Nanofibers for Superior Lithium Storage. Chemistry - A European Journal, 2010, 16, 11543-11548.	1.7	76
54	Superacidic Electrospun Fiberâ€Nafion Hybrid Proton Exchange Membranes. Advanced Energy Materials, 2011, 1, 1133-1140.	10.2	76

#	Article	IF	CITATIONS
55	Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 14661.	6.7	75
56	TiO ₂ Microboxes with Controlled Internal Porosity for Highâ€Performance Lithium Storage. Angewandte Chemie - International Edition, 2015, 54, 14331-14335.	7.2	75
57	An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Materials Today Energy, 2019, 13, 323-330.	2.5	73
58	Blocking Polysulfides and Facilitating Lithium-Ion Transport: Polystyrene Sulfonate@HKUST-1 Membrane for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30451-30459.	4.0	69
59	Overwhelming the Performance of Single Atoms with Atomic Clusters for Platinum-Catalyzed Hydrogen Evolution. ACS Catalysis, 2019, 9, 8213-8223.	5.5	68
60	Modulation of BrÃ,nsted and Lewis Acid Centers for Ni <i>_x</i> Co _{3â^²} <i>_x</i> O ₄ Spinel Catalysts: Towards Efficient Catalytic Conversion of Lignin. Advanced Functional Materials, 2022, 32, .	7.8	67
61	An Ionâ€Conductive Grafted Polymeric Binder with Practical Loading for Silicon Anode with High Interfacial Stability in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	67
62	Sulfonated Polystyrene Fiber Network-Induced Hybrid Proton Exchange Membranes. ACS Applied Materials & Interfaces, 2011, 3, 3732-3737.	4.0	63
63	Tiâ€Based Surface Integrated Layer and Bulk Doping for Stable Voltage and Long Life of Liâ€Rich Layered Cathodes. Advanced Functional Materials, 2021, 31, 2009310.	7.8	59
64	Formation and electrochemical performance of copper/carbon composite nanofibers. Electrochimica Acta, 2010, 55, 1605-1611.	2.6	55
65	Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nature Communications, 2020, 11, 299.	5.8	55
66	The dual actions of modified polybenzimidazole in taming the polysulfide shuttle for long-life lithium–sulfur batteries. NPG Asia Materials, 2016, 8, e317-e317.	3.8	54
67	A new battery process technology inspired by partially carbonized polymer binders. Nano Energy, 2020, 67, 104234.	8.2	52
68	Electrospun Li4Ti5O12/C composites for lithium-ion batteries with high rate performance. Solid State Ionics, 2011, 204-205, 61-65.	1.3	49
69	Electrospun carbon nanofibers decorated with various amounts of electrochemically-inert nickel nanoparticles for use as high-performance energy storage materials. RSC Advances, 2012, 2, 192-198.	1.7	48
70	High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Energy, 2014, 9, 408-416.	8.2	47
71	Accommodation of Silicon in an Interconnected Copper Network for Robust Liâ€lon Storage. Advanced Functional Materials, 2020, 30, 1910249.	7.8	46
72	Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction. Journal of Materials Science and Technology, 2021, 70, 176-184.	5.6	45

#	Article	IF	CITATIONS
73	Constructing Three-Dimensional Structured V ₂ O ₅ /Conductive Polymer Composite with Fast Ion/Electron Transfer Kinetics for Aqueous Zinc-Ion Battery. ACS Applied Energy Materials, 2021, 4, 4208-4216.	2.5	45
74	Revealing the role of spinel phase on Li-rich layered oxides: A review. Chemical Engineering Journal, 2022, 427, 131978.	6.6	43
75	Ni/Mn and Al Dual Concentration-Gradients To Mitigate Voltage Decay and Capacity Fading of Li-Rich Layered Cathodes. ACS Energy Letters, 2021, 6, 2755-2764.	8.8	42
76	Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode. Nano-Micro Letters, 2022, 14, 110.	14.4	42
77	Revealing cooperative Li-ion migration in Li _{1+x} Al _x Ti _{2â^'x} (PO ₄) ₃ solid state electrolytes with high Al doping. Journal of Materials Chemistry A, 2020, 8, 342-348.	5.2	41
78	Bipolar Electrodes for Nextâ€Generation Rechargeable Batteries. Advanced Science, 2020, 7, 2001207.	5.6	41
79	Materials Engineering in Perovskite for Optimized Oxygen Evolution Electrocatalysis in Alkaline Condition. Small, 2021, 17, e2006638.	5.2	41
80	Highly proton conductive electrolyte membranes: Fiber-induced long-range ionic channels. Electrochemistry Communications, 2011, 13, 1005-1008.	2.3	40
81	Porous C/Ni composites derived from fluid coke for ultra-wide bandwidth electromagnetic wave absorption performance. Chemical Engineering Journal, 2019, 366, 415-422.	6.6	40
82	Embedding Fe ₃ C and Fe ₃ N on a Nitrogen-Doped Carbon Nanotube as a Catalytic and Anchoring Center for a High-Areal-Capacity Li–S Battery. ACS Applied Materials & Interfaces, 2021, 13, 20153-20161.	4.0	38
83	Conductive molybdenum carbide as the polysulfide reservoir for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17142-17147.	5.2	37
84	Bimetallic MOFs derived FeM(II)-alloy@C composites with high-performance electromagnetic wave absorption. Chemical Engineering Journal, 2021, 420, 127609.	6.6	37
85	Developments of Electrolyte Systems for Lithiumââ,¬â€œSulfur Batteries: A Review. Frontiers in Energy Research, 2015, 3, .	1.2	36
86	Metal/Graphene Composites with Strong Metal–S Bondings for Sulfur Immobilization in Li–S Batteries. Journal of Physical Chemistry C, 2018, 122, 3263-3272.	1.5	36
87	An Ultra‣ongâ€Life Lithiumâ€Rich Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ Cathode by Threeâ€inâ€One Surface Modification for Lithiumâ€ion Batteries. Angewandte Chemie, 2020, 132, 7852-7856.	1.6	36
88	Water-Soluble Trifunctional Binder for Sulfur Cathodes for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2021, 13, 33066-33074.	4.0	36
89	Formation and characterization of core-sheath nanofibers through electrospinning and surface-initiated polymerization. Polymer, 2010, 51, 4368-4374.	1.8	34
90	Atmospheric plasma treatment of preâ€electrospinning polymer solution: A feasible method to improve electrospinnability. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 115-122.	2.4	33

#	Article	IF	CITATIONS
91	LiFePO4 nanoparticles encapsulated in graphene-containing carbon nanofibers for use as energy storage materials. Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	32
92	Trifunctional Electrode Additive for High Active Material Content and Volumetric Lithiumâ€ l on Electrode Densities. Advanced Energy Materials, 2019, 9, 1803390.	10.2	32
93	Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents. Energy, 2021, 214, 119093.	4.5	31
94	An efficient and durable perovskite electrocatalyst for oxygen reduction in solid oxide fuel cells. Chemical Engineering Journal, 2020, 396, 125237.	6.6	30
95	A mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 22392-22398.	5.2	30
96	Porous Cobalt Oxynitride Nanosheets for Efficient Electrocatalytic Water Oxidation. ChemSusChem, 2018, 11, 1479-1485.	3.6	29
97	Controlled release of ionic drug through the positively charged temperature-responsive membranes. Journal of Membrane Science, 2006, 281, 491-499.	4.1	27
98	Electrodeposition of platinum nanoparticles onto carbon nanofibers for electrocatalytic oxidation of methanol. Materials Letters, 2009, 63, 2115-2118.	1.3	27
99	A high-volumetric-capacity and high-areal-capacity ZnCo ₂ O ₄ anode for Li-ion batteries enabled by a robust biopolymer binder. Journal of Materials Chemistry A, 2018, 6, 19455-19462.	5.2	27
100	Platinum Atomic Clusters Embedded in Defects of Anatase/Graphene for Efficient Electro- and Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 40204-40212.	4.0	27
101	Liâ€lon Cooperative Migration and Oxyâ€Sulfide Synergistic Effect in Li ₁₄ P ₂ Ge ₂ S _{16â^'6} <i>_x</i> O <i>_x<!--</td--><td>İઝ.2</td><td>27</td></i>	İ ઝ. 2	27
102	Fabricating nano-IrO ₂ @amorphous Ir-MOF composites for efficient overall water splitting: a one-pot solvothermal approach. Journal of Materials Chemistry A, 2020, 8, 25687-25695.	5.2	26
103	Atomically thin photoanode of InSe/graphene heterostructure. Nature Communications, 2021, 12, 91.	5.8	26
104	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphology‶unable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
105	0D to 3D controllable nanostructures of BiOBr via a facile and fast room-temperature strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125233.	2.3	25
106	Nickel-substituted Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^´î´} : a highly active perovskite oxygen electrode for reduced-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2019, 7, 12343-12349.	5.2	24
107	Discovering a New class of fluoride solid-electrolyte materials via screening the structural property of Li-ion sublattice. Nano Energy, 2021, 79, 105407.	8.2	24
108	Recent Advances on Nanomaterials for Electrocatalytic CO ₂ Conversion. Energy & Fuels, 2021, 35, 7485-7510.	2.5	24

#	Article	IF	CITATIONS
109	Electrocatalytic properties of Pt/carbon composite nanofibers. Electrochimica Acta, 2009, 54, 7042-7047.	2.6	23
110	A general route of fluoride coating on the cyclability regularity of high-voltage NCM cathodes. Chemical Communications, 2020, 56, 12009-12012.	2.2	23
111	Radiation-induced grafting of N-isopropylacrylamide onto the brominated poly(2,6-dimethyl-1,4-phenylene oxide) membranes. Radiation Physics and Chemistry, 2006, 75, 532-540.	1.4	22
112	Highly Efficient Synthesis of a Moisture-Stable Nitrogen-Abundant Metal–Organic Framework (MOF) for Large-Scale CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 1773-1777.	1.8	22
113	Self-assembled reduced graphene oxide/sulfur composite encapsulated by polyaniline for enhanced electrochemistry performance. Journal of Solid State Electrochemistry, 2018, 22, 667-675.	1.2	21
114	Scalable Lithiophilic/Sodiophilic Porous Buffer Layer Fabrication Enables Uniform Nucleation and Growth for Lithium/Sodium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
115	Synthesis and electrocatalysis of 1-aminopyrene-functionalized carbon nanofiber-supported platinum–ruthenium nanoparticles. Journal of Power Sources, 2010, 195, 5520-5526.	4.0	20
116	Symmetric sodium-ion batteries based on the phosphate material of NASICON-structured Na ₃ Co _{0.5} Mn _{0.5} Ti(PO ₄) ₃ . RSC Advances, 2017, 7, 33273-33277.	1.7	20
117	Achieving exceptional activity and durability toward oxygen reduction based on a cobalt-free perovskite for solid oxide fuel cells. Journal of Energy Chemistry, 2021, 62, 653-659.	7.1	19
118	Effect of Cationic Uniformity in Precursors on Li/Ni Mixing of Ni-Rich Layered Cathodes. Energy & Fuels, 2021, 35, 1842-1850.	2.5	19
119	Synthesis and Electrocatalysis of Carbon Nanofiber-Supported Platinum by 1-AP Functionalization and Polyol Processing Technique. Journal of Physical Chemistry C, 2010, 114, 3791-3797.	1.5	18
120	Self-generation of a quasi p–n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer. Journal of Materials Chemistry A, 2016, 4, 10558-10565.	5.2	18
121	CoP-anchored high N-doped carbon@graphene sheet as bifunctional electrocatalyst for efficient overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 18224-18232.	3.8	18
122	A biopolymer network for lean binder in silicon nanoparticle anodes for lithium-ion batteries. Sustainable Materials and Technologies, 2021, 30, e00333.	1.7	18
123	Simultaneous optimization of CoIr alloy nanoparticles and 2D graphitic-N doped carbon support in CoIr@CN by Ir doping for enhanced oxygen and hydrogen evolution reactions. Journal of Materials Chemistry A, 2022, 10, 15543-15553.	5.2	18
124	Enhancing H2 evolution and molecular oxygen activation via dye sensitized BiOBr0.910.1 under visible light. Journal of Colloid and Interface Science, 2020, 580, 1-10.	5.0	17
125	Achieving Both High Ionic Conductivity and High Interfacial Stability with the Li2+xC1–xBxO3 Solid-State Electrolyte: Design from Theoretical Calculations. ACS Applied Materials & Interfaces, 2020, 12, 6007-6014.	4.0	17
126	Rational design of a mesoporous silica-based cathode for efficient trapping of polysulfides in Li–S batteries. Chemical Communications, 2020, 56, 786-789.	2.2	16

#	Article	IF	CITATIONS
127	Scalable Nitrate Treatment for Constructing Integrated Surface Structures to Mitigate Capacity Fading and Voltage Decay of Liâ€Rich Layered Oxides. Angewandte Chemie - International Edition, 2022, 61,	7.2	16
128	Electrospun carbon nanofiber-supported Pt–Pd alloy composites for oxygen reduction. Journal of Materials Research, 2010, 25, 1329-1335.	1.2	15
129	Aqueous Supramolecular Binder for a Lithium–Sulfur Battery with Flame-Retardant Property. ACS Applied Materials & Interfaces, 2021, 13, 55092-55101.	4.0	15
130	New Findings for the Muchâ€Promised Hematite Photoanodes with Gradient Doping and Overlayer Elaboration. Solar Rrl, 2022, 6, .	3.1	15
131	Millimeter Silicon-Derived Secondary Submicron Materials as High-Initial Coulombic Efficiency Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10255-10260.	2.5	14
132	Nanoporous Cobalt–Nitrogen–Carbon Catalyst-Based Multifunctional Interlayer for Enhanced Li–S Battery Performance. ACS Applied Energy Materials, 2022, 5, 4691-4697.	2.5	14
133	The stability and reaction mechanism of a LiF/electrolyte interface: insight from density functional theory. Journal of Materials Chemistry A, 2020, 8, 2613-2617.	5.2	13
134	Hollow-sphere iron oxides exhibiting enhanced cycling performance as lithium-ion battery anodes. Chemical Communications, 2019, 55, 11638-11641.	2.2	12
135	Electrocatalytic interaction of nano-engineered palladium on carbon nanofibers with hydrogen peroxide and β-NADH. Journal of Solid State Electrochemistry, 2011, 15, 1287-1294.	1.2	11
136	Hollow CoS ₂ Nanobubble Prisms Derived from ZIFâ€67 through Facile Twoâ€&tep Selfâ€Engaged Method for Electromagnetic Wave Absorption. ChemistrySelect, 2021, 6, 4344-4353.	0.7	11
137	Cross-Linked γ-Polyglutamic Acid as an Aqueous SiO _{<i>x</i>} Anode Binder for Long-Term Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 18625-18633.	4.0	11
138	Deciphering the effects of hexagonal and monoclinic structure distribution on the properties of Li-rich layered oxides. Chemical Communications, 2021, 57, 3512-3515.	2.2	10
139	An almost full reversible lithium-rich cathode: Revealing the mechanism of high initial coulombic efficiency. Journal of Energy Chemistry, 2021, 62, 120-126.	7.1	10
140	Ironâ€doped Ag/Ni ₂ (CO ₃)(OH) ₂ hierarchical microtubes for highly efficient water oxidation. , 2022, 4, 939-949.		10
141	Modifying CsPbX ₃ (X = Cl, Br, I) with a Zeolitic Imidazolate Framework through Mechanical Milling for Aqueous Photocatalytic H ₂ Evolution. ACS Applied Energy Materials, 2022, 5, 6248-6255.	2.5	9
142	Boosting oxygen evolution reaction activity and durability of phosphate doped Ni(OH)2/FeOOH hierarchical microtubes by morphology engineering and reconstruction strategy. Journal of Colloid and Interface Science, 2022, 622, 319-326.	5.0	9
143	Structural Engineering of Cobaltâ€Free Perovskite Enables Efficient and Durable Oxygen Reduction in Solid Oxide Fuel Cells. Small Methods, 2022, 6, e2200292.	4.6	8
144	Tuning Site Energy by XO ₆ Units in LiX ₂ (PO ₄) ₃ Enables High Li Ion Conductivity and Improved Stability. ACS Applied Materials & Interfaces, 2021, 13, 50948-50956.	4.0	7

#	Article	IF	CITATIONS
145	Lithiophilic hollow Co3[Co(CN)6]2 embedded carbon nanotube film for dendrite-free lithium metal anodes. Journal of Colloid and Interface Science, 2022, 623, 532-540.	5.0	7
146	Transition metal substitution on Mg(101Â ⁻ 3) and Mg(0001) surfaces for improved hydrogenation and dehydrogenation: A systematic first-principles study. Applied Surface Science, 2019, 479, 626-633.	3.1	6
147	Preâ€activation and Defects Introduced via Citric Acid to Mitigate Capacity and Voltage Fading in Liâ€rich Cathode. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1285-1291.	0.6	6
148	Potential Solid-State Electrolytes with Good Balance between Ionic Conductivity and Electrochemical Stability: Li _{5–<i>x</i>} M _{1–<i>x</i>} M _{<i>x</i>} ′O ₄ (M	= Ad)otj et	Qq©00rgBT
149	Facile Approach to Enhance Activity and CO ₂ Resistance of a Novel Cobalt-Free Perovskite Cathode for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 30881-30888.	4.0	5
150	Atomic Platinum Anchored on Fe-N-C Material for High Performance Oxygen Reduction Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 165-168.	1.0	4
151	Accurate Control of Initial Coulombic Efficiency for Lithiumâ€rich Manganeseâ€based Layered Oxides by Surface Multicomponent Integration. Angewandte Chemie, 2020, 132, 23261-23266.	1.6	4
152	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphology‶unable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie, 2022, 134, .	1.6	4
153	Designing Energy-Storage Devices from Textile Materials. Advanced Materials Research, 0, 441, 231-234.	0.3	3
154	Cathode Materials: Phosphorous Pentasulfide as a Novel Additive for Highâ€Performance Lithium‧ulfur Batteries (Adv. Funct. Mater. 8/2013). Advanced Functional Materials, 2013, 23, 918-918.	7.8	3
155	A tinâ€incorporated multiâ€phase perovskite nanocomposite for efficiently catalyzing oxygen evolution reaction. International Journal of Energy Research, 2022, 46, 13079-13088.	2.2	3
156	Electrospun Nanofibers for Design and Fabrication of Electrocatalysts and Electrolyte Membranes for Fuel cells. Nanostructure Science and Technology, 2014, , 41-67.	0.1	2
157	Innentitelbild: Hierarchical NiCo ₂ O ₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Waterâ€5plitting (Angew. Chem. 21/2016). Angewandte Chemie, 2016, 128, 6216-6216.	1.6	2
158	Lithium-Ion Batteries: Interweaving 3D Network Binder for High-Areal-Capacity Si Anode through Combined Hard and Soft Polymers (Adv. Energy Mater. 3/2019). Advanced Energy Materials, 2019, 9, 1970009.	10.2	2
159	Balancing Stability and Li-ion Conductivity of Li10SiP2O12 for Solid-State Electrolytes with Assistance of body-centered cubic oxygen framework. Journal of Materials Chemistry A, 0, , .	5.2	2
160	Thiotetrelates Li ₂ ZnXS ₄ (X = Si, Ge, and Sn) As Potential Li-Ion Solid-State Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 9203-9211.	4.0	2
161	Effect of platinum salt concentration on the electrospinning of polyacrylonitrile/platinum acetylacetonate solution. Journal of Applied Polymer Science, 2010, 116, 895-901.	1.3	1
162	Scalable Nitrate Treatment for Constructing Integrated Surface Structures to Mitigate Capacity Fading and Voltage Decay of Liâ€Rich Layered Oxides. Angewandte Chemie, 2022, 134, .	1.6	1

#	Article	IF	CITATIONS
163	Lithium-Sulfur Battery. Green Energy and Technology, 2015, , 587-610.	0.4	Ο