List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4707654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nature Communications, 2022, 13, 282.	5.8	83
2	Direct visualization of local deformations in suspended few-layer graphene membranes by coupled in situ atomic force and scanning electron microscopy. Applied Physics Letters, 2021, 118, 103104.	1.5	3
3	Resolving few-layer antimonene/graphene heterostructures. Npj 2D Materials and Applications, 2021, 5,	3.9	11
4	Single indium atoms and few-atom indium clusters anchored onto graphene via silicon heteroatoms. Microscopy and Microanalysis, 2021, 27, 3346-3347.	0.2	0
5	Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid. Communications Physics, 2021, 4, .	2.0	13
6	Single Indium Atoms and Few-Atom Indium Clusters Anchored onto Graphene via Silicon Heteroatoms. ACS Nano, 2021, 15, 14373-14383.	7.3	19
7	Aerosol Jet Printing of Graphene and Carbon Nanotube Patterns on Realistically Rugged Substrates. ACS Omega, 2021, 6, 34301-34313.	1.6	11
8	The role of contaminations in ion beam spectroscopy with freestanding 2D materials: A study on thermal treatment. Journal of Chemical Physics, 2020, 153, 014702.	1.2	11
9	Electrochemical Behavior of Graphene in a Deep Eutectic Solvent. ACS Applied Materials & Interfaces, 2020, 12, 40937-40948.	4.0	29
10	Process Pathway Controlled Evolution of Phase and Vanâ€derâ€Waals Epitaxy in In/In ₂ O ₃ on Graphene Heterostructures. Advanced Functional Materials, 2020, 30, 2003300.	7.8	9
11	New imaging modes for analyzing suspended ultra-thin membranes by double-tip scanning probe microscopy. Scientific Reports, 2020, 10, 4839.	1.6	5
12	Aerosol Jet Printed Nanocarbons on Heat Sink Materials. Proceedings (mdpi), 2020, 56, 30.	0.2	0
13	Reactive intercalation and oxidation at the buried graphene-germanium interface. APL Materials, 2019, 7, .	2.2	16
14	Optical-nanofiber-based interface for single molecules. Physical Review A, 2018, 97, .	1.0	26
15	Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS ₂ Films. ACS Nano, 2018, 12, 8758-8769.	7.3	51
16	Reduced Graphene Oxide as a Monolithic Multifunctional Conductive Binder for Activated Carbon Supercapacitors. ACS Omega, 2018, 3, 9246-9255.	1.6	21
17	Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films. ACS Nano, 2017, 11, 4521-4527.	7.3	35
18	Doping of metal–organic frameworks towards resistive sensing. Scientific Reports, 2017, 7, 2439.	1.6	45

#	Article	IF	CITATIONS
19	Grain boundary-mediated nanopores in molybdenum disulfide grown by chemical vapor deposition. Nanoscale, 2017, 9, 1591-1598.	2.8	31
20	Graphene-based nanolaminates as ultra-high permeation barriers. Npj 2D Materials and Applications, 2017, 1, .	3.9	21
21	Analysis of Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Bi-Layer Gate Dielectric Stacks Using Maxwell-Wagner Instability Model. ECS Transactions, 2017, 80, 347-356.	0.3	2
22	Highly stable amorphous zinc tin oxynitride thin film transistors under positive bias stress. Applied Physics Letters, 2017, 111, 122109.	1.5	10
23	Mechanisms of titania nanoparticle mediated growth of turbostratic carbon nanotubes and nanofibers. Journal of Applied Physics, 2017, 122, 014301.	1.1	4
24	Growth, structure and stability of sputter-deposited MoS ₂ thin films. Beilstein Journal of Nanotechnology, 2017, 8, 1115-1126.	1.5	44
25	Visualising the strain distribution in suspended two-dimensional materials under local deformation. Scientific Reports, 2016, 6, 28485.	1.6	37
26	Ultrafast electronic response of graphene to a strong and localized electric field. Nature Communications, 2016, 7, 13948.	5.8	125
27	Structural, Electrical, and UV Detection Properties of ZnO/Si Heterojunction Diodes. IEEE Transactions on Electron Devices, 2016, 63, 1949-1956.	1.6	27
28	In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites. Journal of Physical Chemistry C, 2016, 120, 22571-22584.	1.5	80
29	Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD. Nano Letters, 2016, 16, 1250-1261.	4.5	114
30	Understanding Capacitance Variation in Sub-nanometer Pores by <i>in Situ</i> Tuning of Interlayer Constrictions. ACS Nano, 2016, 10, 747-754.	7.3	64
31	Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts. Nano Letters, 2015, 15, 1867-1875.	4.5	139
32	Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene. Applied Physics Letters, 2015, 106, .	1.5	54
33	Synthesis of Graphene-layer Nanosheet Coatings by PECVD. Materials Today: Proceedings, 2015, 2, 4247-4255.	0.9	13
34	Low temperature growth of carbon nanotubes on tetrahedral amorphous carbon using Fe–Cu catalyst. Carbon, 2015, 81, 639-649.	5.4	30
35	CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield. Journal of the American Chemical Society, 2014, 136, 17808-17817.	6.6	30
36	Nitrogen controlled iron catalyst phase during carbon nanotube growth. Applied Physics Letters, 2014, 105, .	1.5	22

#	Article	IF	CITATIONS
37	In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper. Chemistry of Materials, 2014, 26, 6380-6392.	3.2	190
38	The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions. Physical Chemistry Chemical Physics, 2014, 16, 25989-26003.	1.3	108
39	Effect of Catalyst Pretreatment on Chirality-Selective Growth of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 5773-5781.	1.5	37
40	Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction. Journal of the American Chemical Society, 2014, 136, 13698-13708.	6.6	95
41	Co-catalytic Absorption Layers for Controlled Laser-Induced Chemical Vapor Deposition of Carbon Nanotubes. ACS Applied Materials & amp; Interfaces, 2014, 6, 4025-4032.	4.0	14
42	Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 5380.	1.6	202
43	Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper. Nano Letters, 2013, 13, 4769-4778.	4.5	231
44	Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources. Nano Letters, 2013, 13, 4624-4631.	4.5	104
45	Tantalum-oxide catalysed chemical vapour deposition of single- and multi-walled carbon nanotubes. RSC Advances, 2013, 3, 4086.	1.7	15
46	Highâ€density remote plasma sputtering of highâ€dielectricâ€constant amorphous hafnium oxide films. Physica Status Solidi (B): Basic Research, 2013, 250, 957-967.	0.7	25
47	Plasma stabilisation of metallic nanoparticles on silicon for the growth of carbon nanotubes. Journal of Applied Physics, 2012, 112, 034303.	1.1	13
48	The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth. Chemistry of Materials, 2012, 24, 4633-4640.	3.2	180
49	Co-Catalytic Solid-State Reduction Applied to Carbon Nanotube Growth. Journal of Physical Chemistry C, 2012, 116, 1107-1113.	1.5	23
50	Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 01AH01.	0.8	25
51	Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication. Journal of Applied Physics, 2012, 111, .	1.1	13
52	Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst. Physical Review B, 2012, 85, .	1.1	68
53	On the Mechanisms of Niâ€Catalysed Graphene Chemical Vapour Deposition. ChemPhysChem, 2012, 13, 2544-2549.	1.0	90
54	Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 01AH01.	0.8	23

#	Article	IF	CITATIONS
55	Manipulation of the catalyst-support interactions for inducing nanotube forest growth. Journal of Applied Physics, 2011, 109, 044303-044303-7.	1.1	35
56	Supportâ^'Catalystâ^'Gas Interactions during Carbon Nanotube Growth on Metallic Ta Films. Journal of Physical Chemistry C, 2011, 115, 4359-4369.	1.5	60
57	In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth. Nano Letters, 2011, 11, 4154-4160.	4.5	258
58	High-kâ€^(k=30) amorphous hafnium oxide films from high rate room temperature deposition. Applied Physics Letters, 2011, 98, .	1.5	61
59	Use of plasma treatment to grow carbon nanotube forests on TiN substrate. Journal of Applied Physics, 2011, 109, .	1.1	37
60	Hafnia nanoparticles – a model system for graphene growth on a dielectric. Physica Status Solidi - Rapid Research Letters, 2011, 5, 341-343.	1.2	25
61	Catalyst design for the growth of highly packed nanotube forests. Physica Status Solidi (B): Basic Research, 2011, 248, 2528-2531.	0.7	8
62	Nanostructured hematite photoelectrochemical electrodes prepared by the low temperature thermal oxidation of iron. Solar Energy Materials and Solar Cells, 2011, 95, 1819-1825.	3.0	54
63	Carbon nanotube forest growth on NiTi shape memory alloy thin films for thermal actuation. Thin Solid Films, 2011, 519, 6126-6129.	0.8	19
64	In-situ study of growth of carbon nanotube forests on conductive CoSi2 support. Journal of Applied Physics, 2011, 109, .	1.1	33
65	Effect of substrate on processing of multi-gun sputter deposited, near-stoichiometric Ni2MnGa thin films. Thin Solid Films, 2010, 518, 2659-2664.	0.8	8
66	Carbon nanotubes growth: From entanglement to vertical alignment. Physica Status Solidi (B): Basic Research, 2010, 247, 2656-2659.	0.7	4
67	Growth of vertically-aligned carbon nanotube forests on conductive cobalt disilicide support. Journal of Applied Physics, 2010, 108, .	1.1	53
68	Growth of Ultrahigh Density Vertically Aligned Carbon Nanotube Forests for Interconnects. ACS Nano, 2010, 4, 7431-7436.	7.3	136
69	Nanoscale Zirconia as a Nonmetallic Catalyst for Graphitization of Carbon and Growth of Single- and Multiwall Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 12144-12154.	6.6	219
70	Growth of high-density vertically aligned arrays of carbon nanotubes by plasma-assisted catalyst pretreatment. Applied Physics Letters, 2009, 95, .	1.5	43
71	Use of carbon nanotubes for VLSI interconnects. Diamond and Related Materials, 2009, 18, 957-962.	1.8	54