M Murphy Westwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4707482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disorder in convergent floral nanostructures enhances signalling to bees. Nature, 2017, 550, 469-474.	27.8	120
2	Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genetics and Genomes, 2015, 11, 1.	1.6	67
3	Development of a complex floral trait: The pollinatorâ€attracting petal spots of the beetle daisy, <i>Gorteria diffusa</i> (Asteraceae). American Journal of Botany, 2009, 96, 2184-2196.	1.7	64
4	Evolutionary Analysis of the MIXTA Gene Family Highlights Potential Targets for the Study of Cellular Differentiation. Molecular Biology and Evolution, 2013, 30, 526-540.	8.9	61
5	Banking on the future: progress, challenges and opportunities for the genetic conservation of forest trees. New Forests, 2017, 48, 153-180.	1.7	61
6	Botanic garden solutions to the plant extinction crisis. Plants People Planet, 2021, 3, 22-32.	3.3	54
7	Comparative labellum micromorphology of the sexually deceptive temperate orchid genus <i>Ophrys</i> : diverse epidermal cell types and multiple origins of structural colour. Botanical Journal of the Linnean Society, 2010, 162, 504-540.	1.6	47
8	Molecular phylogeny of the palm genus Chamaedorea, based on the low-copy nuclear genes PRK and RPB2. Molecular Phylogenetics and Evolution, 2006, 38, 398-415.	2.7	43
9	Strengthening the conservation value of ex situ tree collections. Oryx, 2015, 49, 416-424.	1.0	42
10	Species arguments: clarifying competing concepts of species delimitation in the pseudo-copulatory orchid genus Ophrys. Botanical Journal of the Linnean Society, 2011, 165, 336-347.	1.6	41
11	Directional scattering from the glossy flower of <i>Ranunculus</i> : how the buttercup lights up your chin. Journal of the Royal Society Interface, 2012, 9, 1295-1301.	3.4	40
12	Taxonomic similarity does not predict necessary sample size for <i>ex situ</i> conservation: a comparison among five genera. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200102.	2.6	38
13	Defining exceptional species—A conceptual framework to expand and advance ex situ conservation of plant diversity beyond conventional seed banking. Biological Conservation, 2022, 266, 109440.	4.1	30
14	Conservation genetics of rare trees restricted to subtropical montane cloud forests in southern China: a case study from Quercus arbutifolia (Fagaceae). Tree Genetics and Genomes, 2016, 12, 1.	1.6	14
15	Gap analysis of exceptional species—Using a global list of exceptional plants to expand strategic ex situ conservation action beyond conventional seed banking. Biological Conservation, 2022, 266, 109439.	4.1	13
16	Comparing Genetic Diversity in Three Threatened Oaks. Forests, 2021, 12, 561.	2.1	10
17	Tissue Culture Using Mature Material for the Conservation of Oaks. HortTechnology, 2017, 27, 644-649.	0.9	9
18	ArbNet: 10 years of fostering collaborations, furthering professionalism, and advancing the planting and conservation of trees through the global network of arboreta. Plants People Planet, 2022, 4, 128-135.	3.3	2