Elena Zaslavsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4707403/publications.pdf

Version: 2024-02-01

43 papers

2,168 citations

394421 19 h-index 35 g-index

50 all docs

50 does citations

50 times ranked

4656 citing authors

#	Article	IF	Citations
1	Understanding multicellular function and disease with human tissue-specific networks. Nature Genetics, 2015, 47, 569-576.	21.4	738
2	Single-cell transcriptional profiles in human skeletal muscle. Scientific Reports, 2020, 10, 229.	3.3	188
3	Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 2020, 181, 1464-1474.	28.9	147
4	Astrocytic TYMP and VEGFA drive blood–brain barrier opening in inflammatory central nervous system lesions. Brain, 2015, 138, 1548-1567.	7.6	123
5	CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations. Bioinformatics, 2015, 31, 1584-1591.	4.1	96
6	Pathway-level information extractor (PLIER) for gene expression data. Nature Methods, 2019, 16, 607-610.	19.0	74
7	High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Research, 2018, 28, 1415-1425.	5.5	69
8	Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. Journal of Virology, 2019, 93, .	3.4	65
9	Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nature Communications, 2018, 9, 4020.	12.8	64
10	Comparative analysis of methods for representing and searching for transcription factor binding sites. Bioinformatics, 2004, 20, 3516-3525.	4.1	62
11	The Construction and Use of Log-Odds Substitution Scores for Multiple Sequence Alignment. PLoS Computational Biology, 2010, 6, e1000852.	3.2	58
12	Interactive Big Data Resource to Elucidate Human Immune Pathways and Diseases. Immunity, 2015, 43, 605-614.	14.3	49
13	Antiviral Response Dictated by Choreographed Cascade of Transcription Factors. Journal of Immunology, 2010, 184, 2908-2917.	0.8	46
14	Pandemic H1N1 influenza A viruses suppress immunogenic RIPK3-driven dendritic cell death. Nature Communications, 2017, 8, 1931.	12.8	44
15	The Transcriptional Activator Krýppel-like Factor-6 Is Required for CNS Myelination. PLoS Biology, 2016, 14, e1002467.	5.6	31
16	Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor verteporfin in preclinical glioblastoma models. Neuro-Oncology, 2022, 24, 694-707.	1.2	29
17	Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses. Journal of Virology, 2015, 89, 10190-10205.	3.4	27
18	Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. Cell Reports, 2022, 38, 110467.	6.4	27

#	Article	IF	CITATIONS
19	A combinatorial optimization approach for diverse motif finding applications. Algorithms for Molecular Biology, 2006, $1,13.$	1.2	25
20	Attenuated activation of pulmonary immune cells in mRNA-1273–vaccinated hamsters after SARS-CoV-2 infection. Journal of Clinical Investigation, 2021, 131, .	8.2	23
21	Asymptomatic SARS-CoV-2 Infection Is Associated With Higher Levels of Serum IL-17C, Matrix Metalloproteinase 10 andÂFibroblast Growth Factors Than Mild Symptomatic COVID-19. Frontiers in Immunology, 2022, 13, 821730.	4.8	21
22	$\langle i \rangle M \langle i \rangle$ are better than one: an ensemble-based motif finder and its application to regulatory element prediction. Bioinformatics, 2009, 25, 868-874.	4.1	19
23	Advances in the computational landscape for repurposed drugs against COVID-19. Drug Discovery Today, 2021, 26, 2800-2815.	6.4	19
24	Î ² -Catenin Regulates GnRH-Induced FSHÎ ² Gene Expression. Molecular Endocrinology, 2013, 27, 224-237.	3.7	17
25	Prospective Isolation and Comparison of Human Germinal Matrix andÂGlioblastoma EGFR + Populations with Stem Cell Properties. Stem Cell Reports, 2017, 8, 1421-1429.	4.8	16
26	Regulatory Architecture of the $\hat{Ll^2T2}$ Gonadotrope Cell Underlying the Response to Gonadotropin-Releasing Hormone. Frontiers in Endocrinology, 2018, 9, 34.	3.5	15
27	Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E260-E277.	3.5	13
28	Reconstruction of regulatory networks through temporal enrichment profiling and its application to H1N1 influenza viral infection. BMC Bioinformatics, 2013, 14, S1.	2.6	11
29	Inferring PDZ Domain Multi-Mutant Binding Preferences from Single-Mutant Data. PLoS ONE, 2010, 5, e12787.	2.5	7
30	A Compact Mathematical Programming Formulation for DNA Motif Finding. Lecture Notes in Computer Science, 2006, , 233-245.	1.3	7
31	Deciphering the combinatorial landscape of immunity. ELife, 2020, 9, .	6.0	6
32	Interpretation of an individual functional genomics experiment guided by massive public data. Nature Methods, 2018, 15, 1049-1052.	19.0	5
33	Distinct peripheral blood molecular signature emerges with successful tacrolimus withdrawal in kidney transplant recipients. American Journal of Transplantation, 2020, 20, 3477-3485.	4.7	4
34	Computational approaches to understanding dendritic cell responses to influenza virus infection. Immunologic Research, 2012, 54, 160-168.	2.9	3
35	A cost-aggregating integer linear program for motif finding. Journal of Discrete Algorithms, 2011, 9, 326-334.	0.7	2
36	STMC-28. INTACT EGFR DEFINES HUMAN GERMINAL MATRIX AND GLIOBLASTOMA POPULATIONS WITH SHARED AND EPIGENETICALLY IMPRINTED STEM CELL PROPERTIES. Neuro-Oncology, 2016, 18, vi188-vi188.	1.2	0

3

#	Article	IF	CITATIONS
37	GENE-11. CHROMATIN ACCESSIBILITY DEFINES TRANSCRIPTIONAL DRIVERS OF MIGRATION IN HUMAN GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi94-vi95.	1.2	0
38	ANGI-04. TEAD1 REGULATES CELL MIGRATION IN HUMAN GLIOBLASTOMA IN PART THROUGH EMT-ASSOCIATED CADHERINS. Neuro-Oncology, 2018, 20, vi29-vi29.	1.2	0
39	Comparing Host Module Activation Patterns and Temporal Dynamics in Infection by Influenza H1N1 Viruses. Frontiers in Immunology, 2021, 12, 691758.	4.8	0
40	Graph-based Approaches for Motif Discovery. , 2009, , 83-99.		0
41	Abstract 1111: Verteporfin inhibits GBM growth and migration and confers survival benefit in xenograft models. , 2020, , .		0
42	EXTH-51. ANTI-INVASIVE EFFICACY AND SURVIVAL BENEFIT OF THE YAP-TEAD INHIBITOR VERTEPORFIN IN PRECLINICAL GLIOBLASTOMA MODELS. Neuro-Oncology, 2020, 22, ii98-ii98.	1,2	0
43	EPCO-05. GENOME-WIDE ANALYSIS OF TEAD1 OCCUPANCY IN BIOLOGICALLY DISTINCT GLIOBLASTOMA SAMPLES. Neuro-Oncology, 2021, 23, vi2-vi2.	1.2	O