Wei Luo

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4707070/publications.pdf
Version: 2024-02-01

Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy.
Nature Methods, 2012, 9, 889-895.

Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano, 2013, 7, 9147-9155.
7.3

445

Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Science Translational Medicine, 2014, 6, 267 ral 75.
5.8

Synthetic aperture-based on-chip microscopy. Light: Science and Applications, 2015, 4, e261-e261.
7.7

204

5 Imaging and Sizing of Single DNA Molecules on a Mobile Phone. ACS Nano, 2014, 8, 12725-12733.
7.3

155

6 Pixel super-resolution using wavelength scanning. Light: Science and Applications, 2016, 5, e16060-e16060.
7.7

Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled
Wide-field optical detection of nanoparticles usin
nanolenses. Nature Photonics, 2013, 7, 247-254.
15.6

133

Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Scientific
Reports, 2013, 3, .
$9 \quad$ Field-Portable Pixel Super-Resolution Colour Microscope. PLoS ONE, 2013, 8, e76475.
1.1

81

10 High-Throughput and Label-Free Single Nanoparticle Sizing Based on Time-Resolved On-Chip
Microscopy. ACS Nano, 2015, 9, 3265-3273.

11 Propagation phasor approach for holographic image reconstruction. Scientific Reports, 2016, 6, 22738.
1.6

59

12 Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab on A Chip, 2016, 16, 4350-4358.
3.1

59

13 Plasmonics Enhanced Smartphone Fluorescence Microscopy. Scientific Reports, 2017, 7, 2124.
1.6

53

14 Giga-Pixel Lensfree Holographic Microscopy and Tomography Using Color Image Sensors. PLoS ONE, 2012, 7 , e45044.

Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses. Lab on A Chip, 2013, 13, 2028.
3.1

52

Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating
over a large volume. Light: Science and Applications, 2018, 7, 17121-17121.
7.7

48

17 Tunable Vapor-Condensed Nanolenses. ACS Nano, 2014, 8, 7340-7349.

Computational out-of-focus imaging increases the spaceâ€"bandwidth product in lens-based coherent
microscopy. Optica, $2016,3,1422$.

Wide-field pathology imaging using on-chip microscopy. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 467, 3-7.

3 imaging of sex-sorted bovine spermatozoon locomotion, head spin and flagellum beating. Scientific
Reports, 2018, 8, 15650.

High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging.
Applied Physics Letters, 2015, 106, 151107.

Wide-field Imaging of Pathology Slides using Lensfree On-chip Microscopy. , 2015, , .
1

Giga-pixel imaging on a chip: High numerical aperture lensfree microscopy over a wide field-of-view., 2013, , .

Enhanced space-bandwidth product in lensfree on-chip microscopy. , 2013, , .

26 Giga-pixel nanoimaging using computational on-chip microscopy. , 2013, , .

High-throughput Imaging of Single Viruses using Self-assembled Nano-lenses and On-Chip Holography.
, 2013, , .

High-resolution On-chip Imaging using Synthetic Aperture., 2015, , .

29 Single DNA imaging and length quantification through a mobile phone microscope. , 2016, , .

30 Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy. Proceedings of SPIE, 2016, , .

32 Pixel Super-Resolution in Coherent Microscopy Systems Through Out-of-Focus Imaging. , 2017, , .
0
33 Self-Assembled Nanolens Formation for Widefield Computational Imaging of Nanoparticles on a Chip. , 2013, , .

Single Nanoparticle and Virus Detection Using a Smart Phone Based Fluorescence Microscope. , 2014, ,

