

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4707070/publications.pdf Version: 2024-02-01

WELLIO

#	Article	IF	CITATIONS
1	Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nature Methods, 2012, 9, 889-895.	9.0	461
2	Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano, 2013, 7, 9147-9155.	7.3	445
3	Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Science Translational Medicine, 2014, 6, 267ra175.	5.8	235
4	Synthetic aperture-based on-chip microscopy. Light: Science and Applications, 2015, 4, e261-e261.	7.7	204
5	Imaging and Sizing of Single DNA Molecules on a Mobile Phone. ACS Nano, 2014, 8, 12725-12733.	7.3	155
6	Pixel super-resolution using wavelength scanning. Light: Science and Applications, 2016, 5, e16060.	7.7	145
7	Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses. Nature Photonics, 2013, 7, 247-254.	15.6	133
8	Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Scientific Reports, 2013, 3, .	1.6	113
9	Field-Portable Pixel Super-Resolution Colour Microscope. PLoS ONE, 2013, 8, e76475.	1.1	81
10	High-Throughput and Label-Free Single Nanoparticle Sizing Based on Time-Resolved On-Chip Microscopy. ACS Nano, 2015, 9, 3265-3273.	7.3	73
11	Propagation phasor approach for holographic image reconstruction. Scientific Reports, 2016, 6, 22738.	1.6	59
12	Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab on A Chip, 2016, 16, 4350-4358.	3.1	59
13	Plasmonics Enhanced Smartphone Fluorescence Microscopy. Scientific Reports, 2017, 7, 2124.	1.6	53
14	Giga-Pixel Lensfree Holographic Microscopy and Tomography Using Color Image Sensors. PLoS ONE, 2012, 7, e45044.	1.1	52
15	Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses. Lab on A Chip, 2013, 13, 2028.	3.1	52
16	Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume. Light: Science and Applications, 2018, 7, 17121-17121.	7.7	48
17	Tunable Vapor-Condensed Nanolenses. ACS Nano, 2014, 8, 7340-7349.	7.3	46
18	Demosaiced pixel super-resolution for multiplexed holographic color imaging. Scientific Reports, 2016, 6, 28601.	1.6	34

Wei Luo

#	Article	IF	CITATIONS
19	Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy. Optica, 2016, 3, 1422.	4.8	32
20	Wide-field pathology imaging using on-chip microscopy. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 467, 3-7.	1.4	23
21	3D imaging of sex-sorted bovine spermatozoon locomotion, head spin and flagellum beating. Scientific Reports, 2018, 8, 15650.	1.6	16
22	High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging. Applied Physics Letters, 2015, 106, 151107.	1.5	7
23	Wide-field Imaging of Pathology Slides using Lensfree On-chip Microscopy. , 2015, , .		1
24	Giga-pixel imaging on a chip: High numerical aperture lensfree microscopy over a wide field-of-view. , 2013, , .		0
25	Enhanced space-bandwidth product in lensfree on-chip microscopy. , 2013, , .		0
26	Giga-pixel nanoimaging using computational on-chip microscopy. , 2013, , .		0
27	High-throughput Imaging of Single Viruses using Self-assembled Nano-Ienses and On-Chip Holography. , 2013, , .		0
28	High-resolution On-chip Imaging using Synthetic Aperture. , 2015, , .		0
29	Single DNA imaging and length quantification through a mobile phone microscope. , 2016, , .		0
30	Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy. Proceedings of SPIE, 2016, , .	0.8	0
31	Yeast viability and concentration analysis using lens-free computational microscopy and machine learning. , 2017, , .		0
32	Pixel Super-Resolution in Coherent Microscopy Systems Through Out-of-Focus Imaging. , 2017, , .		0
33	Self-Assembled Nanolens Formation for Widefield Computational Imaging of Nanoparticles on a Chip. , 2013, , .		0
34	Single Nanoparticle and Virus Detection Using a Smart Phone Based Fluorescence Microscope. , 2014, ,		0
35	Field-Portable Nanoparticle and Virus Sizing Enabled by On-Chip Microscopy and Vapor-Condensed Nanolenses. , 2015, , .		0
36	High-throughput Lensfree Ion-Track Analysis for Laser-Driven Accelerators. , 2015, , .		0

Wei Luo

#	Article	IF	CITATIONS
37	Field-portable Smartphone Microscopy Platform for Wide-field Imaging and Sizing of Single DNA molecules. , 2015, , .		0
38	Wavelength Scanning based Pixel Super-Resolution. , 2016, , .		0
39	Lensfree On-chip Microscopy Achieves Accurate Measurement of Yeast Cell Viability and Concentration Using Machine Learning. , 2017, , .		0