
David T Teachey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/470673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hodgkin lymphoma in an individual with <i>TREX1</i> â€mediated Aicardi Goutières syndrome. Pediatric Blood and Cancer, 2022, 69, e29322.	0.8	1
2	Transcriptome and unique cytokine microenvironment of Castleman disease. Modern Pathology, 2022, 35, 451-461.	2.9	10
3	Lymphoproliferative disorders. , 2022, , 377-390.		0
4	Taking a BiTE Out of CAR-T Cell Efficacy. Journal of Clinical Oncology, 2022, 40, 921-923.	0.8	1
5	Rational drug combinations with CDK4/6 inhibitors in acute lymphoblastic leukemia. Haematologica, 2022, 107, 1746-1757.	1.7	14
6	Sexâ€based disparities in outcome in pediatric acute lymphoblastic leukemia: a Children's Oncology Group report. Cancer, 2022, 128, 1863-1870.	2.0	12
7	Children's Oncology Group Trial AALL1231: A Phase III Clinical Trial Testing Bortezomib in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia and Lymphoma. Journal of Clinical Oncology, 2022, 40, 2106-2118.	0.8	45
8	Kikuchi-Fujimoto disease is mediated by an aberrant type I interferon response. Modern Pathology, 2022, 35, 462-469.	2.9	4
9	Potential Role of IFNÎ ³ Inhibition in Refractory Cytokine Release Syndrome Associated with CAR T-cell Therapy. Blood Cancer Discovery, 2022, 3, 90-94.	2.6	23
10	JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia, 2022, 36, 1499-1507.	3.3	6
11	Inhibition of the Sec61 translocon overcomes cytokineâ€induced glucocorticoid resistance in Tâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2022, , .	1.2	6
12	Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood, 2022, 140, 619-629.	0.6	45
13	Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nature Communications, 2022, 13, 2801.	5.8	25
14	Efficacy and safety of daratumumab (DARA) in pediatric and young adult patients (pts) with relapsed/refractory T-cell acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma (LL): Results from the phase 2 DELPHINUS study Journal of Clinical Oncology, 2022, 40, 10001-10001.	0.8	15
15	Impact of socioeconomic status on survival after CD19 CART therapy Journal of Clinical Oncology, 2022, 40, 7013-7013.	0.8	0
16	Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell–Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. Clinical Cancer Research, 2022, 28, 3804-3813.	3.2	17
17	Statistical Considerations for Analyses of Time-To-Event Endpoints in Oncology Clinical Trials: Illustrations with CAR-T Immunotherapy Studies. Clinical Cancer Research, 2022, 28, 3940-3949.	3.2	4

18 Please eat me! Targeting CD47 and CD38 in T-ALL. Blood, 2022, 140, 6-8.

0.6 1

#	Article	IF	CITATIONS
19	Human Adenovirus 7-Associated Hemophagocytic Lymphohistiocytosis-like Illness: Clinical and Virological Characteristics in a Cluster of Five Pediatric Cases. Clinical Infectious Diseases, 2021, 73, e1532-e1538.	2.9	12
20	Single-cell RNA-seq reveals developmental plasticity with coexisting oncogenic states and immune evasion programs in ETP-ALL. Blood, 2021, 137, 2463-2480.	0.6	35
21	Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) Antibody Responses in Children With Multisystem Inflammatory Syndrome in Children (MIS-C) and Mild and Severe Coronavirus Disease 2019 (COVID-19). Journal of the Pediatric Infectious Diseases Society, 2021, 10, 669-673.	0.6	45
22	Optimizing therapy in the modern age: differences in length of maintenance therapy in acute lymphoblastic leukemia. Blood, 2021, 137, 168-177.	0.6	35
23	Practical guidelines for monitoring and management of coagulopathy following tisagenlecleucel CAR T-cell therapy. Blood Advances, 2021, 5, 593-601.	2.5	28
24	Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nature Cancer, 2021, 2, 284-299.	5.7	70
25	Xenograft models for pediatric cancer therapies. Faculty Reviews, 2021, 10, 11.	1.7	2
26	Combined use of emapalumab and ruxolitinib in a patient with refractory hemophagocytic lymphohistiocytosis was safe and effective. Pediatric Blood and Cancer, 2021, 68, e29026.	0.8	11
27	Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial. Journal of Clinical Oncology, 2021, 39, 920-930.	0.8	110
28	Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared with adult and pediatric COVID-19. Science Immunology, 2021, 6, .	5.6	152
29	Diagnostic Challenges in Pediatric Hemophagocytic Lymphohistiocytosis. Journal of Clinical Immunology, 2021, 41, 1213-1218.	2.0	10
30	Targeted gene expression classifier identifies pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients at high risk for end induction minimal residual disease positivity Journal of Clinical Oncology, 2021, 39, 10002-10002.	0.8	0
31	Prognostic Impact of CNS-2 status in T-ALL: A report from the Children's Oncology Group Journal of Clinical Oncology, 2021, 39, 10003-10003.	0.8	0
32	Tisagenlecleucel for treatment of children and young adults with relapsed/refractory B ell acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2021, 68, e29123.	0.8	15
33	Skewed Cytokine Responses Rather Than the Magnitude of the Cytokine Storm May Drive Cardiac Dysfunction in Multisystem Inflammatory Syndrome in Children. Journal of the American Heart Association, 2021, 10, e021428.	1.6	18
34	Anti-CD7 CAR T cells for T-ALL: impressive early-stage efficacy. Nature Reviews Clinical Oncology, 2021, 18, 677-678.	12.5	9
35	Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021, 39, 3044-3055.	0.8	94
36	Off-on-off-on use of imatinib in three children with fibrodysplasia ossificans progressiva. Bone, 2021, 150, 116016.	1.4	6

#	Article	IF	CITATIONS
37	Novel Approaches to T-Cell ALL. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S95-S98.	0.2	Ο
38	Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .	3.9	20
39	Intensification of Chemotherapy Using a Modified BFM Backbone for Children, Adolescents and Young Adults with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and T-Cell Lymphoblastic Lymphoma (T-LL) Identifies Highly Chemorefractory Patients Who Benefit from Allogeneic Hematopoietic Stem Cell Transplantation, Blood, 2021, 138, 3487-3487.	0.6	1
40	Treatment Resistance in ETP-ALL Is Associated with Progenitor-like Arrest State. Blood, 2021, 138, 618-618.	0.6	0
41	Non-Classical Monocyte Abundance Is an Independent Adverse Risk Factor for Relapse in Pediatric B-ALL. Blood, 2021, 138, 1316-1316.	0.6	0
42	The Role of PF4 Antibodies in Pediatric Sars-Cov-2 Infections. Blood, 2021, 138, 1004-1004.	0.6	0
43	Development of Proteolytic Targeting Chimeras to Target Lck in T-Cell Acute Lymphoblastic Leukemia. Blood, 2021, 138, 867-867.	0.6	2
44	Proteomic profiling of MIS-C patients indicates heterogeneity relating to interferon gamma dysregulation and vascular endothelial dysfunction. Nature Communications, 2021, 12, 7222.	5.8	41
45	Childhood Leukemia. , 2020, , 1748-1764.e4.		6
46	Partially CD3+-Depleted Unrelated and Haploidentical Donor Peripheral Stem Cell Transplantation Has Favorable Graft-versus-Host Disease and Survival Rates in Pediatric Hematologic Malignancy. Biology of Blood and Marrow Transplantation, 2020, 26, 493-501.	2.0	3
47	Chimeric antigen receptor T cell therapy for pediatric and young adult B cell acute lymphoblastic leukemia. Expert Review of Clinical Immunology, 2020, 16, 1029-1042.	1.3	8
48	PIM Kinase Inhibitors Block the Growth of Primary T-cell Acute Lymphoblastic Leukemia: Resistance Pathways Identified by Network Modeling Analysis. Molecular Cancer Therapeutics, 2020, 19, 1809-1821.	1.9	6
49	Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Advances, 2020, 4, 5174-5183.	2.5	30
50	Convalescent plasma for pediatric patients with SARSâ€CoVâ€2â€associated acute respiratory distress syndrome. Pediatric Blood and Cancer, 2020, 67, e28693.	0.8	37
51	Evidence of thrombotic microangiopathy in children with SARS-CoV-2 across the spectrum of clinical presentations. Blood Advances, 2020, 4, 6051-6063.	2.5	105
52	Distinguishing Multisystem Inflammatory Syndrome in Children From Kawasaki Disease and Benign Inflammatory Illnesses in the SARS-CoV-2 Pandemic. Pediatric Emergency Care, 2020, 36, 554-558.	0.5	20
53	Increased mTOR activation in idiopathic multicentric Castleman disease. Blood, 2020, 135, 1673-1684.	0.6	52
54	The NSD2 p.E1099K Mutation Is Enriched at Relapse and Confers Drug Resistance in a Cell Context‑Dependent Manner in Pediatric Acute Lymphoblastic Leukemia. Molecular Cancer Research, 2020, 18, 1153-1165.	1.5	20

#	Article	IF	CITATIONS
55	Six Candidate miRNAs Associated With Early Relapse in Pediatric B-Cell Acute Lymphoblastic Leukemia. Anticancer Research, 2020, 40, 3147-3153.	0.5	13
56	Successful Outcomes of Newly Diagnosed T Lymphoblastic Lymphoma: Results From Children's Oncology Group AALL0434. Journal of Clinical Oncology, 2020, 38, 3062-3070.	0.8	42
57	Harnessing immunotherapy for pediatric T-cell malignancies. Expert Review of Clinical Immunology, 2020, 16, 361-371.	1.3	12
58	Risk-Adapted Preemptive Tocilizumab Decreases Severe Cytokine Release Syndrome (CRS) after CTL019 CD19-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy for Pediatric B-Cell Acute Lymphoblastic Leukemia (B-ALL). Biology of Blood and Marrow Transplantation, 2020, 26, S39.	2.0	12
59	Systemic Endothelial Activation Is Associated With Early Acute Respiratory Distress Syndrome in Children With Extrapulmonary Sepsis*. Critical Care Medicine, 2020, 48, 344-352.	0.4	20
60	How I treat newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma in children. Blood, 2020, 135, 159-166.	0.6	104
61	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. , 2020, 8, e001511.		138
62	Glucocorticoids paradoxically facilitate steroid resistance in T cell acute lymphoblastic leukemias and thymocytes. Journal of Clinical Investigation, 2020, 130, 863-876.	3.9	36
63	Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS–CoV-2. Journal of Clinical Investigation, 2020, 130, 5967-5975.	3.9	319
64	Safety of Palbociclib in Combination with Chemotherapy in Pediatric and Young Adult Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia and Lymphoma: A Children's Oncology Group Pilot Study. Blood, 2020, 136, 20-21.	0.6	5
65	Convalescent Plasma for COVID-19: An Old Therapy for a Novel Pathogen. , 2020, 17, .		2
66	Spotlight on Tocilizumab in the Treatment of CAR-T-Cell-Induced Cytokine Release Syndrome: Clinical Evidence to Date. Therapeutics and Clinical Risk Management, 2020, 16, 705-714.	0.9	40
67	Pediatric Acute Lymphoblastic Leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 81-112.	2.3	102
68	Bringing Immunotherapy to the Front Line in Childhood Leukemia. , 2020, 17, .		0
69	Outcomes for Children With SR-ALL: More Is Not Always Better. , 2020, 17, .		0
70	Germline Predisposition to Childhood Leukemia: T-ALL Risk Variants Uncovered in GWAS. , 2020, 17, .		0
71	Overcoming NOTCH1-Driven Chemoresistance in T-Cell Acute Lymphoblastic Leukemia Via Metabolic Intervention with Oxphos Inhibitor. Blood, 2020, 136, 18-20.	0.6	2
72	CRLF2 rearrangement in Ph-like acute lymphoblastic leukemia predicts relative glucocorticoid resistance that is overcome with MEK or Akt inhibition. PLoS ONE, 2019, 14, e0220026.	1.1	16

#	Article	IF	CITATIONS
73	Cellular therapy: Immuneâ€related complications. Immunological Reviews, 2019, 290, 114-126.	2.8	55
74	Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Review of Clinical Immunology, 2019, 15, 813-822.	1.3	221
75	Excellent outcomes for patients with B-cell precursor acute lymphoblastic leukaemia with late bone marrow relapses. Lancet Haematology,the, 2019, 6, e172-e173.	2.2	Ο
76	Development of hemolytic paroxysmal nocturnal hemoglobinuria without graft loss following hematopoietic stem cell transplantation for acquired aplastic anemia. Pediatric Transplantation, 2019, 23, e13393.	0.5	1
77	Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncology, The, 2019, 20, e142-e154.	5.1	149
78	A Phase II Study of Alisertib in Children with Recurrent/Refractory Solid Tumors or Leukemia: Children's Oncology Group Phase I and Pilot Consortium (ADVL0921). Clinical Cancer Research, 2019, 25, 3229-3238.	3.2	61
79	Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene, 2019, 38, 2241-2262.	2.6	29
80	From Aminopterin to Tisagenlecleucel: Childhood Acute Lymphoblastic Leukemia at the Forefront of Cancer Breakthroughs. , 2019, 16, .		0
81	Popping the Bubble: Promising Results From a Phase I-II Lentiviral Gene Therapy Trial for X-SCID. , 2019, 16, .		Ο
82	A Novel Immunotherapy for T-ALL. , 2019, 16, .		0
83	Venetoclax for Hypodiploid ALL: Novel Therapy for Bad Biology. , 2019, 16, .		0
84	Hematopoietic Stem Cell Transplantation: Not Always a Panacea for Leukemia Patients With Unfavorable Outcome. , 2019, 16, .		0
85	JAKing Up Targeted Therapy for Ph-like Acute Lymphoblastic Leukemia. , 2019, 16, .		Ο
86	Gene expression signature associated with in vitro dexamethasone resistance and post-induction minimal residual disease in pediatric T-cell acute lymphoblastic leukemia Journal of Clinical Oncology, 2019, 37, 10033-10033.	0.8	0
87	Hypofibrinogenemia Is Associated With Poor Outcome and Secondary Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome in Pediatric Severe Sepsis*. Pediatric Critical Care Medicine, 2018, 19, 397-405.	0.2	21
88	Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. New England Journal of Medicine, 2018, 378, 1479-1493.	13.9	525
89	Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit 'ALL'. Nature Reviews Clinical Oncology, 2018, 15, 218-218.	12.5	93
90	Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors. Cancer Cell, 2018, 33, 274-291.e8.	7.7	58

#	Article	IF	CITATIONS
91	Immunotherapy for ALL takes the world by storm. Nature Reviews Clinical Oncology, 2018, 15, 69-70.	12.5	25
92	Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood, 2018, 131, 995-999.	0.6	170
93	MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica, 2018, 103, 830-839.	1.7	35
94	Early clinical observations on the use of imatinib mesylate in FOP: A report of seven cases. Bone, 2018, 109, 276-280.	1.4	34
95	PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2018, 215, 3094-3114.	4.2	37
96	Neurotoxicity after CTL019 in a pediatric and young adult cohort. Annals of Neurology, 2018, 84, 537-546.	2.8	82
97	Tisagenlecleucel for the treatment of B-cell acute lymphoblastic leukemia. Expert Review of Anticancer Therapy, 2018, 18, 959-971.	1.1	19
98	Checkpoint Inhibitors Augment CD19-Directed Chimeric Antigen Receptor (CAR) T Cell Therapy in Relapsed B-Cell Acute Lymphoblastic Leukemia. Blood, 2018, 132, 556-556.	0.6	106
99	Children's Oncology Group (COG) AALL0434: Successful Disease Control without Cranial Radiation in Newly Diagnosed T Lymphoblastic Lymphoma (T-LL). Blood, 2018, 132, 1000-1000.	0.6	2
100	A New Standard of Care for Children and Young Adults With T-cell Acute Lymphoblastic Leukemia. , 2018, 15, .		0
101	Novel Insights From Comprehensive Genomic Profiling of T Cell Acute Lymphoblastic Leukemia. , 2018, 15, .		0
102	Remission: More Than Meets the Eye. , 2018, 15, .		2
103	The Importance of Genomic Testing in Children With Complex Autoimmune Cytopenias: Precision Medicine Is Not Just for Cancer. , 2018, 15, .		0
104	Spare the Spleen in ALPS: It Is Not an Expendable Vestigial Organ. Blood, 2018, 132, 2435-2435.	0.6	0
105	Glucocorticoids Paradoxically Induce Intrinsic Steroid Resistance through a STAT5-Mediated Survival Mechanism in T-Cell Acute Lymphoblastic Leukemia. Blood, 2018, 132, 913-913.	0.6	0
106	PRC2 Inactivation Induces Resistance to Chemotherapy-Induced Apoptosis By Upregulating the TRAP1 Mitochondrial Chaperone in T-ALL. Blood, 2018, 132, 889-889.	0.6	0
107	Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2017, 129, 177-187.	0.6	138
108	Monocyte lineage–derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy, 2017, 19, 867-880.	0.3	116

#	Article	IF	CITATIONS
109	Behcet Disease Initially Presenting as Deep Venous Thrombosis: A Case Report. Journal of Pediatric Hematology/Oncology, 2017, 39, 410-412.	0.3	4
110	Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Critical Care Medicine, 2017, 45, e124-e131.	0.4	357
111	A phase 1 trial of temsirolimus and intensive re-induction chemotherapy for 2nd or greater relapse of acute lymphoblastic leukaemia: a Children's Oncology Group study (ADVL1114). British Journal of Haematology, 2017, 177, 467-474.	1.2	32
112	Severe Mucha–Habermannâ€Like Ulceronecrotic Skin Disease in Tâ€Cell Acute Lymphoblastic Leukemia Responsive to Basiliximab and Stem Cell Transplant. Pediatric Dermatology, 2017, 34, e265-e270.	0.5	6
113	Autoimmune lymphoproliferative syndrome: more than a FAScinating disease. F1000Research, 2017, 6, 1928.	0.8	76
114	The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2017, 35, 103-103.	0.8	80
115	Effect of chimeric antigen receptor-modified T (CAR-T) cells on responses in children with non-CNS extramedullary relapse of CD19+ acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2017, 35, 10507-10507.	0.8	16
116	Successful Treatment of Recurrent Autoimmune Cytopenias in the Context of Sinus Histiocytosis With Massive Lymphadenopathy Using Sirolimus. Pediatric Blood and Cancer, 2016, 63, 358-360.	0.8	18
117	T-cell acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program, 2016, 2016, 580-588.	0.9	176
118	Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. Journal of Immunological Methods, 2016, 434, 1-8.	0.6	150
119	Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discovery, 2016, 6, 664-679.	7.7	811
120	Optimal Management of Autoimmune Lymphoproliferative Syndrome in Children. Paediatric Drugs, 2016, 18, 261-272.	1.3	18
121	Lymphoproliferative Disorders. , 2016, , 334-347.		0
122	Cytokine Release Syndrome after Haploidentical Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 1736-1737.	2.0	19
123	Sirolimus is effective in relapsed/refractory autoimmune cytopenias: results of a prospective multi-institutional trial. Blood, 2016, 127, 17-28.	0.6	165
124	The role of proteasome inhibition in the treatment of malignant and non-malignant hematologic disorders. Expert Review of Hematology, 2016, 9, 873-889.	1.0	21
125	Quantitative Phosphotyrosine Profiling of Patient-Derived Xenografts Identifies Therapeutic Targets in Pediatric Leukemia. Cancer Research, 2016, 76, 2766-2777.	0.4	16
126	Atypical Chronic Myeloid Leukemia in Two Pediatric Patients. Pediatric Blood and Cancer, 2016, 63, 156-159.	0.8	23

#	Article	IF	CITATIONS
127	Efficacy of humanized CD19-targeted chimeric antigen receptor (CAR)-modified T cells in children with relapsed ALL Journal of Clinical Oncology, 2016, 34, 3007-3007.	0.8	17
128	Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL Journal of Clinical Oncology, 2016, 34, 3011-3011.	0.8	98
129	MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood, 2015, 126, 2202-2212.	0.6	88
130	Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.	0.6	110
131	CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood, 2015, 125, 4017-4023.	0.6	598
132	Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood, 2015, 125, 1759-1767.	0.6	189
133	Biomarkers Accurately Predict Cytokine Release Syndrome (CRS) after Chimeric Antigen Receptor (CAR) T Cell Therapy for Acute Lymphoblastic Leukemia (ALL). Blood, 2015, 126, 1334-1334.	0.6	5
134	Efficient Trafficking of Chimeric Antigen Receptor (CAR)-Modified T Cells to CSF and Induction of Durable CNS Remissions in Children with CNS/Combined Relapsed/Refractory ALL. Blood, 2015, 126, 3769-3769.	0.6	40
135	Efficacy and Safety of Humanized Chimeric Antigen Receptor (CAR)-Modified T Cells Targeting CD19 in Children with Relapsed/Refractory ALL. Blood, 2015, 126, 683-683.	0.6	22
136	Temsirolimus and intensive re-induction chemotherapy for 2nd or greater relapse of acute lymphoblastic leukemia (ALL): A Children's Oncology Group study Journal of Clinical Oncology, 2015, 33, 10029-10029.	0.8	2
137	Targeting the PI3K/mTOR Pathway in Pediatric Hematologic Malignancies. Frontiers in Oncology, 2014, 4, 108.	1.3	92
138	Managing Cytokine Release Syndrome Associated With Novel T Cell-Engaging Therapies. Cancer Journal (Sudbury, Mass), 2014, 20, 119-122.	1.0	624
139	Toxicity management for patients receiving novel T-cell engaging therapies. Current Opinion in Pediatrics, 2014, 26, 43-49.	1.0	130
140	Loss of TBL1XR1 Disrupts Glucocorticoid Receptor Recruitment to Chromatin and Results in Glucocorticoid Resistance in a B-Lymphoblastic Leukemia Model. Journal of Biological Chemistry, 2014, 289, 20502-20515.	1.6	52
141	Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. New England Journal of Medicine, 2014, 371, 1507-1517.	13.9	4,444
142	The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: a phase 3 Children's Oncology Group/Pediatric Blood and Marrow Transplant Consortium trial. Blood, 2014, 123, 2017-2025.	0.6	109
143	Targeting cytokines in ALPS: it's FAShionable. Blood, 2014, 123, 1116-1118.	0.6	3
144	Cytokine Release Syndrome (CRS) after Chimeric Antigen Receptor (CAR) T Cell Therapy for Relapsed/Refractory (R/R) CLL. Blood, 2014, 124, 1983-1983.	0.6	6

#	Article	IF	CITATIONS
145	The CXCR4/CXCL12 Axis Mediates Chemotaxis, Survival, and Chemoresistance in T-Cell Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3629-3629.	0.6	6
146	T Cells Engineered with a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Have Long Term Persistence and Induce Durable Remissions in Children with Relapsed, Refractory ALL. Blood, 2014, 124, 380-380.	0.6	14
147	Targeted Cancer Therapy in High-Risk Pediatric Leukemia Using Global Phosphotyrosine Profiling. Blood, 2014, 124, 969-969.	0.6	Ο
148	Immunologic Recovery in Children after Alternative Donor Allogeneic Transplantation for Hematologic Malignancies: Comparison of Recipients of Partially T Cell–Depleted Peripheral Blood Stem Cells and Umbilical Cord Blood. Biology of Blood and Marrow Transplantation, 2013, 19, 1581-1589.	2.0	29
149	Diagnosis and Management of Autoimmune Cytopenias in Childhood. Pediatric Clinics of North America, 2013, 60, 1489-1511.	0.9	74
150	Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. New England Journal of Medicine, 2013, 368, 1509-1518.	13.9	3,021
151	Predicting relapse risk in childhood acute lymphoblastic leukaemia. British Journal of Haematology, 2013, 162, 606-620.	1.2	89
152	Treatment of <scp>E</scp> pstein <scp>B</scp> arr virusâ€induced haemophagocytic lymphohistiocytosis with rituximabâ€containing chemoâ€immunotherapeutic regimens. British Journal of Haematology, 2013, 162, 376-382.	1.2	191
153	Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood, 2013, 121, 5154-5157.	0.6	524
154	In Vivo Efficacy of PI3K Pathway Signaling Inhibition for Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Blood, 2013, 122, 2672-2672.	0.6	5
155	Targeting mTOR Signaling Leads To Complete and Durable Responses In Children With Multi-Lineage Autoimmune Cytopenias, Including ALPS, SLE, Evans and CVID. Blood, 2013, 122, 330-330.	0.6	2
156	T Cells Engineered With a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Produce Significant In Vivo Proliferation, Complete Responses and Long-Term Persistence Without Gvhd In Children and Adults With Relapsed, Refractory ALL. Blood, 2013, 122, 67-67.	0.6	17
157	PI3K/AKT/mTOR Signaling Is a Significant Druggable Pathway In Infant Acute Lymphoblastic Leukemia (ALL). Blood, 2013, 122, 1669-1669.	0.6	7
158	Deletions In TBL1XR1 Results In Glucocorticoid Resistance By Decreasing Glucocorticoid Signaling In Childhood B-Lymphoblastic Leukemia. Blood, 2013, 122, 602-602.	0.6	1
159	New advances in the diagnosis and treatment of autoimmune lymphoproliferative syndrome. Current Opinion in Pediatrics, 2012, 24, 1-8.	1.0	94
160	Pediatric Phase I Trial and Pharmacokinetic Study of MLN8237, an Investigational Oral Selective Small-Molecule Inhibitor of Aurora Kinase A: A Children's Oncology Group Phase I Consortium Study. Clinical Cancer Research, 2012, 18, 6058-6064.	3.2	110
161	Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2012, 120, 3510-3518.	0.6	263
162	Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 2012, 22, 153-166.	7.7	621

#	Article	IF	CITATIONS
163	Targeting the PI3K/AKT/mTOR Signaling Axis in Children with Hematologic Malignancies. Paediatric Drugs, 2012, 14, 299-316.	1.3	31
164	Targeting the PI3K/AKT/mTOR Signaling Axis in Children with Hematologic Malignancies. Paediatric Drugs, 2012, 14, 299-316.	1.3	86
165	In vivo monitoring of JAK/STAT and PI3K/mTOR signal transduction inhibition in pediatric CRLF2-rearranged acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2012, 30, 9506-9506.	0.8	Ο
166	CD19-Redirected Chimeric Antigen Receptor T (CART19) Cells Induce a Cytokine Release Syndrome (CRS) and Induction of Treatable Macrophage Activation Syndrome (MAS) That Can Be Managed by the IL-6 Antagonist Tocilizumab (toc) Blood, 2012, 120, 2604-2604.	0.6	6
167	Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling. Blood, 2011, 118, e112-e117.	0.6	49
168	Statins are active in acute lymphoblastic leukaemia (ALL): a therapy that may treat ALL and prevent avascular necrosis. British Journal of Haematology, 2011, 155, 403-407.	1.2	13
169	Rapamycin does not control hemophagocytic lymphohistiocytosis in LCMVâ€infected perforinâ€deficient mice. Pediatric Blood and Cancer, 2011, 57, 1239-1243.	0.8	3
170	A Randomized Trial of Sirolimus-Based Graft Versus Host Disease (GVHD) Prophylaxis After Hematopoietic Stem Cell Transplantation (HSCT) in Selected Patients with CR1 and CR2 ALL: Results From Children's Oncology Group Study ASCT0431. Blood, 2011, 118, 837-837.	0.6	1
171	Targeting mTOR and JAK2 in Xenograft Models of CRLF2-Overexpressing Acute Lymphoblastic Leukemia (ALL). Blood, 2011, 118, 249-249.	0.6	1
172	Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: a multi-institutional study. Blood, 2010, 115, 2142-2145.	0.6	84
173	Somatic ALPS: a FAScinating condition. Blood, 2010, 115, 5125-5126.	0.6	6
174	Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). British Journal of Haematology, 2010, 148, 205-216.	1.2	115
175	Cutting Edge: Lymphoproliferation Caused by Fas Deficiency Is Dependent on the Transcription Factor Eomesodermin. Journal of Immunology, 2010, 185, 7151-7155.	0.4	16
176	Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood, 2010, 116, e35-e40.	0.6	405
177	Targeting mTOR Signaling Is An Effective Treatment Strategy for IKAROS and JAK Kinase Mutated Acute Lymphoblastic Leukemia. Blood, 2010, 116, 3251-3251.	0.6	Ο
178	Treatment with sirolimus ameliorates tacrolimusâ€induced autoimmune cytopenias after solid organ transplant. Pediatric Blood and Cancer, 2009, 53, 1114-1116.	0.8	22
179	Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. British Journal of Haematology, 2009, 145, 101-106.	1.2	151
180	Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. British Journal of Haematology, 2009, 145, 569-580.	1.2	106

#	Article	IF	CITATIONS
181	Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo. Molecular Therapy, 2009, 17, 1453-1464.	3.7	988
182	Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunologic Research, 2008, 42, 84-105.	1.3	35
183	Saddle Pulmonary Embolism as a Complication of Vasectomy. Urology, 2008, 71, 351.e5-351.e6.	0.5	3
184	Targeting Notch signaling in autoimmune and lymphoproliferative disease. Blood, 2008, 111, 705-714.	0.6	68
185	mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia. Blood, 2008, 112, 2020-2023.	0.6	117
186	Targeting HMG-CoA Reductase in Acute Lymphoblastic Leukemia (ALL): Statins Inhibit Proliferation and Induce Apoptosis in ALL Cells. Blood, 2008, 112, 2927-2927.	0.6	4
187	Thymic Stromal-Derived Lymphopoietin Induces Proliferation of Pre-B Leukemia and Antagonizes mTOR Inhibitors, Suggesting a Role for Interleukin-7Rα Signaling. Cancer Research, 2007, 67, 9963-9970.	0.4	64
188	In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood, 2007, 109, 2008-2013.	0.6	42
189	Use of Rituximab in Conjunction With Immunosuppressive Chemotherapy as a Novel Therapy for Epstein Barr Virus-associated Hemophagocytic Lymphohistiocytosis. Journal of Pediatric Hematology/Oncology, 2007, 29, 569-573.	0.3	103
190	A Phase I Trial of Sirolimus (Rapamycin) in Pediatric Patients with Relapsed/Refractory Leukemia Blood, 2007, 110, 2834-2834.	0.6	7
191	The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood, 2006, 107, 1149-1155.	0.6	165
192	Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS). Blood, 2006, 108, 1965-1971.	0.6	82
193	In Vivo Control of Acute Lymphoblastic Leukemia by Immunostimulatory CpG Oligonucleotides Blood, 2006, 108, 1868-1868.	0.6	15
194	Development of Cold Agglutinin Autoimmune Hemolytic Anemia During Treatment for Pediatric Acute Lymphoblastic Leukemia. Journal of Pediatric Hematology/Oncology, 2005, 27, 397-399.	0.3	15
195	Unmasking Evans syndrome: T-cell phenotype and apoptotic response reveal autoimmune lymphoproliferative syndrome (ALPS). Blood, 2005, 105, 2443-2448.	0.6	151
196	Murine Ultrasonography Confirms That Rapamycin Is Effective Against Autoimmune Lymphoproliferative Syndrome (ALPS) Blood, 2005, 106, 2386-2386.	0.6	1
197	Cell Division Rates of Primary Human Precursor B Cells in Culture Reflect In Vivo Rates. Stem Cells, 2004, 22, 1111-1120.	1.4	39
198	IL-7 and Thymic Stromal Lymphopoietin (TSLP) Stimulate Proliferation of All Cells and Reverse mTOR Inhibitor-Induced Growth Inhibition, Suggesting a Role for IL-7Rα Signaling in All Blood, 2004, 104, 1893-1893.	0.6	0

#	ARTICLE	IF	CITATIONS
199	mTOR Inhibitors Induce Apoptosis and Inhibit Growth of Primary Adult Human ALL in Xenograft and Tissue Culture Models Blood, 2004, 104, 2748-2748.	0.6	0
200	The gamma-Globin Promoter Has a Major Role in Competitive Inhibition of beta-Globin Gene Expression in Early Erythroid Development. DNA and Cell Biology, 1999, 18, 293-303.	0.9	9