
## Marian Joels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4706402/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Individual differences in the encoding of contextual details following acute stress: An explorative study. European Journal of Neuroscience, 2022, 55, 2714-2738.                                                                                                | 1.2 | 9         |
| 2  | Effects of early life adversity on immediate early gene expression: Systematic review and 3-level meta-analysis of rodent studies. PLoS ONE, 2022, 17, e0253406.                                                                                                 | 1.1 | 3         |
| 3  | The mouse brain after foot shock in four dimensions: Temporal dynamics at a single-cell resolution.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                                             | 3.3 | 17        |
| 4  | The STRESS-NL database: A resource for human acute stress studies across the Netherlands.<br>Psychoneuroendocrinology, 2022, 141, 105735.                                                                                                                        | 1.3 | 3         |
| 5  | Mechanisms of memory under stress. Neuron, 2022, 110, 1450-1467.                                                                                                                                                                                                 | 3.8 | 56        |
| 6  | Sleeping off stress. Science, 2022, 377, 27-28.                                                                                                                                                                                                                  | 6.0 | 2         |
| 7  | Application of a pharmacological transcriptome filter identifies a shortlist of mouse glucocorticoid receptor target genes associated with memory consolidation. Neuropharmacology, 2022, 216, 109186.                                                           | 2.0 | 4         |
| 8  | Disrupted upregulation of salience network connectivity during acute stress in siblings of schizophrenia patients. Psychological Medicine, 2021, 51, 1038-1048.                                                                                                  | 2.7 | 13        |
| 9  | Increasing the statistical power of animal experiments with historical control data. Nature<br>Neuroscience, 2021, 24, 470-477.                                                                                                                                  | 7.1 | 36        |
| 10 | Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Translational Psychiatry, 2021, 11, 106.                                                                                                              | 2.4 | 21        |
| 11 | RehabMove2018: active lifestyle for people with physical disabilities; mobility, exercise & sports.<br>Disability and Rehabilitation, 2021, 43, 1-2.                                                                                                             | 0.9 | 0         |
| 12 | Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Reports, 2021, 35, 109185.                                                                                                                        | 2.9 | 42        |
| 13 | The rodent object-in-context task: A systematic review and meta-analysis of important variables. PLoS<br>ONE, 2021, 16, e0249102.                                                                                                                                | 1.1 | 8         |
| 14 | Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in<br>an Operant Rat Task. Frontiers in Behavioral Neuroscience, 2021, 15, 698501.                                                                              | 1.0 | 8         |
| 15 | Stress-related psychopathology after cardiac surgery and intensive care treatment. Journal of Affective Disorders Reports, 2021, 6, 100199.                                                                                                                      | 0.9 | 0         |
| 16 | Non-genomic steroid signaling through the mineralocorticoid receptor: Involvement of a membrane-associated receptor?. Molecular and Cellular Endocrinology, 2021, 541, 111501.                                                                                   | 1.6 | 13        |
| 17 | The brain mineralocorticoid receptor. , 2020, , 45-62.                                                                                                                                                                                                           |     | 0         |
| 18 | Age-dependent shift in spontaneous excitation-inhibition balance of infralimbic prefrontal layer II/III<br>neurons is accelerated by early life stress, independent of forebrain mineralocorticoid receptor<br>expression. Neuropharmacology, 2020, 180, 108294. | 2.0 | 12        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pro-social preference in an automated operant two-choice reward task under different housing conditions: Exploratory studies on pro-social decision making. Developmental Cognitive Neuroscience, 2020, 45, 100827. | 1.9 | 16        |
| 20 | The Role of Stress in Bipolar Disorder. Current Topics in Behavioral Neurosciences, 2020, 48, 21-39.                                                                                                                | 0.8 | 7         |
| 21 | The relevance of a rodent cohort in the Consortium on Individual Development. Developmental<br>Cognitive Neuroscience, 2020, 45, 100846.                                                                            | 1.9 | 5         |
| 22 | Maternal care of heterozygous dopamine receptor <scp>D4</scp> knockout mice: Differential susceptibility to earlyâ€life rearing conditions. Genes, Brain and Behavior, 2020, 19, e12655.                            | 1.1 | 8         |
| 23 | Reward-Related Striatal Responses Following Stress in Healthy Individuals and Patients With Bipolar<br>Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 966-974.                  | 1.1 | 4         |
| 24 | Time-dependent effects of psychosocial stress on the contextualization of neutral memories.<br>Psychoneuroendocrinology, 2019, 108, 140-149.                                                                        | 1.3 | 17        |
| 25 | Sex-Dependent Modulation of Acute Stress Reactivity After Early Life Stress in Mice: Relevance of<br>Mineralocorticoid Receptor Expression. Frontiers in Behavioral Neuroscience, 2019, 13, 181.                    | 1.0 | 22        |
| 26 | The effects of different rearing conditions on sexual maturation and maternal care in heterozygous mineralocorticoid receptor knockout mice. Hormones and Behavior, 2019, 112, 54-64.                               | 1.0 | 14        |
| 27 | The behavioral phenotype of early life adversity: A 3-level meta-analysis of rodent studies.<br>Neuroscience and Biobehavioral Reviews, 2019, 102, 299-307.                                                         | 2.9 | 71        |
| 28 | Circadian and Ultradian Variations in Corticosterone Level Influence Functioning of the Male Mouse<br>Basolateral Amygdala. Endocrinology, 2019, 160, 791-802.                                                      | 1.4 | 13        |
| 29 | Hyperthermiaâ€induced seizures followed by repetitive stress are associated with ageâ€dependent changes<br>in specific aspects of the mouse stress system. Journal of Neuroendocrinology, 2019, 31, e12697.         | 1.2 | 4         |
| 30 | The effect of genetic vulnerability and military deployment on the development of post-traumatic stress disorder and depressive symptoms. European Neuropsychopharmacology, 2019, 29, 405-415.                      | 0.3 | 11        |
| 31 | No Time-Dependent Effects of Psychosocial Stress on Fear Contextualization and Generalization: A<br>Randomized-Controlled Study With Healthy Participants. Chronic Stress, 2019, 3, 247054701989654.                | 1.7 | 6         |
| 32 | Brain Mineralocorticoid Receptors and Resilience to Stress. Vitamins and Hormones, 2019, 109, 341-359.                                                                                                              | 0.7 | 7         |
| 33 | Increased responses of the reward circuitry to positive task feedback following acute stress in healthy controls but not in siblings of schizophrenia patients. NeuroImage, 2019, 184, 547-554.                     | 2.1 | 19        |
| 34 | Diffusion MRI-based cortical connectome reconstruction: dependency on tractography procedures and neuroanatomical characteristics. Brain Structure and Function, 2018, 223, 2269-2285.                              | 1.2 | 60        |
| 35 | At-risk individuals display altered brain activity following stress. Neuropsychopharmacology, 2018, 43, 1954-1960.                                                                                                  | 2.8 | 26        |
| 36 | The stressed brain of humans and rodents. Acta Physiologica, 2018, 223, e13066.                                                                                                                                     | 1.8 | 115       |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Frontiers in Neuroendocrinology, 2018, 49, 124-145.                         | 2.5 | 175       |
| 38 | Early life stress determines the effects of glucocorticoids and stress on hippocampal function:<br>Electrophysiological and behavioral evidence respectively. Neuropharmacology, 2018, 133, 307-318. | 2.0 | 41        |
| 39 | Dissociable roles of glucocorticoid and noradrenergic activation on social discounting.<br>Psychoneuroendocrinology, 2018, 90, 22-28.                                                                | 1.3 | 34        |
| 40 | Cognitive functioning in post-traumatic stress disorder: a meta-analysis of evidence from animal models and clinical studies. European Neuropsychopharmacology, 2018, 28, S49-S50.                   | 0.3 | 1         |
| 41 | Corticosterone impairs flexible adjustment of spatial navigation in an associative place–reward<br>learning task. Behavioural Pharmacology, 2018, 29, 351-364.                                       | 0.8 | 6         |
| 42 | The effect of hydrocortisone administration on intertemporal choice. Psychoneuroendocrinology, 2018, 88, 173-182.                                                                                    | 1.3 | 29        |
| 43 | The relation between cortisol and functional connectivity in people with and without stressâ€sensitive epilepsy. Epilepsia, 2018, 59, 179-189.                                                       | 2.6 | 27        |
| 44 | Effects of Maternal Deprivation and Complex Housing on Rat Social Behavior in Adolescence and Adulthood. Frontiers in Behavioral Neuroscience, 2018, 12, 193.                                        | 1.0 | 25        |
| 45 | Effects of early life stress on biochemical indicators of the dopaminergic system: A 3 level meta-analysis of rodent studies. Neuroscience and Biobehavioral Reviews, 2018, 95, 1-16.                | 2.9 | 34        |
| 46 | Stress and Corticosteroids Aggravate Morphological Changes in the Dentate Gyrus after Early-Life<br>Experimental Febrile Seizures in Mice. Frontiers in Endocrinology, 2018, 9, 3.                   | 1.5 | 18        |
| 47 | Glucocorticoid receptor exon 1F methylation and the cortisol stress response in health and disease.<br>Psychoneuroendocrinology, 2018, 97, 182-189.                                                  | 1.3 | 17        |
| 48 | 227. Longitudinal Changes in Glucocorticoid Receptor Exon 1F Methylation as a Biomarker for Psychopathology After Military Deployment. Biological Psychiatry, 2018, 83, S91.                         | 0.7 | 1         |
| 49 | Genetic variation in the glucocorticoid receptor and psychopathology after dexamethasone administration in cardiac surgery patients. Journal of Psychiatric Research, 2018, 103, 167-172.            | 1.5 | 5         |
| 50 | Corticosteroids and the brain. Journal of Endocrinology, 2018, 238, R121-R130.                                                                                                                       | 1.2 | 131       |
| 51 | Effects of early-life stress on cognitive function and hippocampal structure in female rodents.<br>Neuroscience, 2017, 342, 101-119.                                                                 | 1.1 | 85        |
| 52 | Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor. Molecular Psychiatry, 2017, 22, 466-475.                                              | 4.1 | 58        |
| 53 | Brain mineralocorticoid receptor function in control of salt balance and stress-adaptation.<br>Physiology and Behavior, 2017, 178, 13-20.                                                            | 1.0 | 47        |
| 54 | Early life adversity: Lasting consequences for emotional learning. Neurobiology of Stress, 2017, 6,<br>14-21.                                                                                        | 1.9 | 91        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of early life stress on rodent hippocampal synaptic plasticity: a systematic review. Current<br>Opinion in Behavioral Sciences, 2017, 14, 155-166.                                                                                                           | 2.0 | 9         |
| 56 | Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress, 2017, 20, 421-448.                                                                 | 0.8 | 263       |
| 57 | 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. Journal of Endocrinology, 2017, 234, T49-T66.                                                                                                            | 1.2 | 108       |
| 58 | Acute stress effects on GABA and glutamate levels in the prefrontal cortex: A 7T 1H magnetic resonance spectroscopy study. NeuroImage: Clinical, 2017, 14, 195-200.                                                                                                  | 1.4 | 33        |
| 59 | Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis.<br>Psychoneuroendocrinology, 2017, 77, 25-36.                                                                                                                        | 1.3 | 476       |
| 60 | Longitudinal Changes In Glucocorticoid Receptor 1f Methylation And Psychopathology After Military<br>Deployment. European Neuropsychopharmacology, 2017, 27, S470-S471.                                                                                              | 0.3 | 0         |
| 61 | Rapid and Slow Effects of Corticosteroid Hormones on Hippocampal Activity. , 2017, , 327-341.                                                                                                                                                                        |     | 3         |
| 62 | The added value of rodent models in studying parental influence on offspring development:<br>opportunities, limitations and future perspectives. Current Opinion in Psychology, 2017, 15, 174-181.                                                                   | 2.5 | 20        |
| 63 | Longitudinal changes in glucocorticoid receptor exon 1F methylation and psychopathology after military deployment. Translational Psychiatry, 2017, 7, e1181-e1181.                                                                                                   | 2.4 | 24        |
| 64 | Time-Dependent Shifts in Neural Systems Supporting Decision-Making Under Stress. , 2017, , 371-385.                                                                                                                                                                  |     | 5         |
| 65 | Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the<br>Mineralocorticoid Receptor. Neuropsychopharmacology, 2017, 42, 1262-1271.                                                                                                    | 2.8 | 60        |
| 66 | Overexpression of Mineralocorticoid Receptors in the Mouse Forebrain Partly Alleviates the Effects<br>of Chronic Early Life Stress on Spatial Memory, Neurogenesis and Synaptic Function in the Dentate<br>Gyrus. Frontiers in Cellular Neuroscience, 2017, 11, 132. | 1.8 | 38        |
| 67 | Early life stress-induced alterations in rat brain structures measured with high resolution MRI. PLoS ONE, 2017, 12, e0185061.                                                                                                                                       | 1.1 | 29        |
| 68 | Corticosteroid Actions on Electrical Activity in the Limbic Brain. , 2017, , 131-148.                                                                                                                                                                                |     | 0         |
| 69 | Transient Prepubertal Mifepristone Treatment Normalizes Deficits in Contextual Memory and<br>Neuronal Activity of Adult Male Rats Exposed to Maternal Deprivation. ENeuro, 2017, 4,<br>ENEURO.0253-17.2017.                                                          | 0.9 | 33        |
| 70 | Mifepristone Treatment during Early Adolescence Fails to Restore Maternal Deprivation-Induced<br>Deficits in Behavioral Inhibition of Adult Male Rats. Frontiers in Behavioral Neuroscience, 2016, 10, 122.                                                          | 1.0 | 11        |
| 71 | The Effect of Dexamethasone on Symptoms of Posttraumatic Stress Disorder and Depression After Cardiac Surgery and Intensive Care Admission. Critical Care Medicine, 2016, 44, 512-520.                                                                               | 0.4 | 34        |
| 72 | Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior. Hippocampus, 2016, 26, 911-923.                                                                                                       | 0.9 | 28        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Brain GABA levels across psychiatric disorders: A systematic literature review and metaâ€analysis of<br><sup>1</sup> Hâ€MRS studies. Human Brain Mapping, 2016, 37, 3337-3352.                                                                    | 1.9 | 264       |
| 74 | Cortisol fluctuations relate to interictal epileptiform discharges in stress sensitive epilepsy. Brain, 2016, 139, 1673-1679.                                                                                                                     | 3.7 | 49        |
| 75 | Trait anxiety mediates the effect of stress exposure on post-traumatic stress disorder and depression risk in cardiac surgery patients. Journal of Affective Disorders, 2016, 206, 216-223.                                                       | 2.0 | 27        |
| 76 | Severe stress hormone conditions cause an extended window of excitability in the mouse basolateral amygdala. Neuropharmacology, 2016, 110, 175-180.                                                                                               | 2.0 | 37        |
| 77 | Stress and Depression: a Crucial Role of the Mineralocorticoid Receptor. Journal of Neuroendocrinology, 2016, 28, .                                                                                                                               | 1.2 | 134       |
| 78 | Development of psychopathology in deployed armed forces in relation to plasma GABA levels.<br>Psychoneuroendocrinology, 2016, 73, 263-270.                                                                                                        | 1.3 | 19        |
| 79 | Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nature Communications, 2016, 7, 10967.                                                                                            | 5.8 | 175       |
| 80 | Stress Research: Past, Present, and Future. , 2016, , 2381-2410.                                                                                                                                                                                  |     | 0         |
| 81 | Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress. Neurobiology of Learning and Memory, 2016, 133, 30-38. | 1.0 | 70        |
| 82 | Interactions between <i>N</i> -Ethylmaleimide-sensitive factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus. Hippocampus, 2016, 26, 848-856.                                    | 0.9 | 11        |
| 83 | Cognitive Adaptation under Stress: A Case for the Mineralocorticoid Receptor. Trends in Cognitive Sciences, 2016, 20, 192-203.                                                                                                                    | 4.0 | 161       |
| 84 | Hippocampal Fast Glutamatergic Transmission Is Transiently Regulated by Corticosterone Pulsatility.<br>PLoS ONE, 2016, 11, e0145858.                                                                                                              | 1.1 | 28        |
| 85 | Effects of Early Life Stress on Synaptic Plasticity in the Developing Hippocampus of Male and Female<br>Rats. PLoS ONE, 2016, 11, e0164551.                                                                                                       | 1.1 | 60        |
| 86 | Neuro opinion: reforming the academic system is a joint responsibility. European Journal of Neuroscience, 2015, 41, 1111-1112.                                                                                                                    | 1.2 | 2         |
| 87 | The voice of the next generation. European Journal of Neuroscience, 2015, 42, 2371-2371.                                                                                                                                                          | 1.2 | 0         |
| 88 | Sensory modulation disorders in childhood epilepsy. Journal of Neurodevelopmental Disorders, 2015,<br>7, 34.                                                                                                                                      | 1.5 | 25        |
| 89 | Overexpression of mineralocorticoid receptors does not affect memory and anxiety-like behavior in female mice. Frontiers in Behavioral Neuroscience, 2015, 9, 182.                                                                                | 1.0 | 15        |
| 90 | Complex Living Conditions Impair Behavioral Inhibition but Improve Attention in Rats. Frontiers in<br>Behavioral Neuroscience, 2015, 9, 357.                                                                                                      | 1.0 | 13        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Toward a mechanistic understanding of interindividual differences in cognitive changes after stress:<br>reply to van den Bos. Trends in Neurosciences, 2015, 38, 403-404.                                   | 4.2 | 1         |
| 92  | Seizure occurrence and the circadian rhythm of cortisol: a systematic review. Epilepsy and Behavior, 2015, 47, 132-137.                                                                                     | 0.9 | 43        |
| 93  | mTOR is essential for corticosteroid effects on hippocampal AMPA receptor function and fear memory. Learning and Memory, 2015, 22, 577-583.                                                                 | 0.5 | 26        |
| 94  | Antipsychotic use is associated with a blunted cortisol stress response: A study in euthymic bipolar disorder patients and their unaffected siblings. European Neuropsychopharmacology, 2015, 25, 77-84.    | 0.3 | 27        |
| 95  | Stress-induced alterations in large-scale functional networks of the rodent brain. NeuroImage, 2015, 105, 312-322.                                                                                          | 2.1 | 102       |
| 96  | Mineralocorticoid receptor haplotypes sex-dependently moderate depression susceptibility following childhood maltreatment. Psychoneuroendocrinology, 2015, 54, 90-102.                                      | 1.3 | 69        |
| 97  | A Stress-Induced Shift From Trace to Delay Conditioning Depends on the Mineralocorticoid Receptor.<br>Biological Psychiatry, 2015, 78, 830-839.                                                             | 0.7 | 38        |
| 98  | Relation between stress-precipitated seizures and the stress response in childhood epilepsy. Brain, 2015, 138, 2234-2248.                                                                                   | 3.7 | 34        |
| 99  | The Hitchhiker's Guide to a Neuroscience Career. Neuron, 2015, 86, 613-616.                                                                                                                                 | 3.8 | 3         |
| 100 | A friend in need: Time-dependent effects of stress on social discounting in men. Hormones and Behavior, 2015, 73, 75-82.                                                                                    | 1.0 | 87        |
| 101 | Blocking the Mineralocorticoid Receptor in Humans Prevents the Stress-Induced Enhancement of<br>Centromedial Amygdala Connectivity with the Dorsal Striatum. Neuropsychopharmacology, 2015, 40,<br>947-956. | 2.8 | 91        |
| 102 | Stress hormone corticosterone enhances susceptibility to cortical spreading depression in familial hemiplegic migraine type 1 mutant mice. Experimental Neurology, 2015, 263, 214-220.                      | 2.0 | 27        |
| 103 | Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress<br>in Female Mice. Frontiers in Behavioral Neuroscience, 2015, 9, 374.                                   | 1.0 | 18        |
| 104 | Overexpression of Mineralocorticoid Receptors Partially Prevents Chronic Stress-Induced<br>Reductions in Hippocampal Memory and Structural Plasticity. PLoS ONE, 2015, 10, e0142012.                        | 1.1 | 24        |
| 105 | Mineralocorticoid Receptors Guide Spatial and Stimulus-Response Learning in Mice. PLoS ONE, 2014, 9, e86236.                                                                                                | 1.1 | 28        |
| 106 | Corticosterone and decision-making in male Wistar rats: the effect of corticosterone application in the infralimbic and orbitofrontal cortex. Frontiers in Behavioral Neuroscience, 2014, 8, 127.           | 1.0 | 17        |
| 107 | Ultradian corticosterone pulses balance glutamatergic transmission and synaptic plasticity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14265-14270.     | 3.3 | 66        |
| 108 | Age- and Sex-Dependent Effects of Early Life Stress on Hippocampal Neurogenesis. Frontiers in<br>Endocrinology, 2014, 5, 13.                                                                                | 1.5 | 98        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Adverse Consequences of Glucocorticoid Medication: Psychological, Cognitive, and Behavioral Effects. American Journal of Psychiatry, 2014, 171, 1045-1051.                                                     | 4.0 | 168       |
| 110 | Proliferation in the Alzheimer Hippocampus Is due to Microglia, Not Astroglia, and Occurs at Sites of<br>Amyloid Deposition. Neural Plasticity, 2014, 2014, 1-12.                                              | 1.0 | 66        |
| 111 | Linking genetic variants of the mineralocorticoid receptor and negative memory bias: Interaction with prior life adversity. Psychoneuroendocrinology, 2014, 40, 181-190.                                       | 1.3 | 25        |
| 112 | Does Saint Nicholas provoke seizures? Hints from Google Trends. Epilepsy and Behavior, 2014, 32, 132-134.                                                                                                      | 0.9 | 7         |
| 113 | Rapid corticosteroid actions on synaptic plasticity in the mouse basolateral amygdala: Relevance of recent stress history and β-adrenergic signaling. Neurobiology of Learning and Memory, 2014, 112, 168-175. | 1.0 | 9         |
| 114 | Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Structure and Function, 2014, 219, 1615-1626.                                                      | 1.2 | 82        |
| 115 | Early life stress in epilepsy: A seizure precipitant and risk factor for epileptogenesis. Epilepsy and<br>Behavior, 2014, 38, 160-171.                                                                         | 0.9 | 73        |
| 116 | Delayed effects of cortisol enhance fear memory of trace conditioning. Psychoneuroendocrinology, 2014, 40, 257-268.                                                                                            | 1.3 | 15        |
| 117 | Inhibiting 11β-hydroxysteroid dehydrogenase type 1 prevents stress effects on hippocampal synaptic plasticity and impairs contextual fear conditioning. Neuropharmacology, 2014, 81, 231-236.                  | 2.0 | 28        |
| 118 | Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences, 2014, 37, 304-314.                                                                                   | 4.2 | 693       |
| 119 | STRESS EXPOSURE ACROSS THE LIFE SPAN CUMULATIVELY INCREASES DEPRESSION RISK AND IS MODERATED BY NEUROTICISM. Depression and Anxiety, 2014, 31, 737-745.                                                        | 2.0 | 126       |
| 120 | Long-lasting Consequences of Early Life Stress on Brain Structure, Emotion and Cognition. Current<br>Topics in Behavioral Neurosciences, 2014, 18, 81-92.                                                      | 0.8 | 30        |
| 121 | A Tale of Two Sexes. Neuron, 2014, 82, 1196-1199.                                                                                                                                                              | 3.8 | 10        |
| 122 | P.2.d.041 Determinants of acute stress reactivity in euthymic bipolar disorder patients and their unaffected siblings. European Neuropsychopharmacology, 2014, 24, S437-S438.                                  | 0.3 | 0         |
| 123 | Regulation of Excitatory Synapses by Stress Hormones. , 2014, , 19-32.                                                                                                                                         |     | 2         |
| 124 | Delayed Effects of Corticosterone on Slow After-Hyperpolarization Potentials in Mouse Hippocampal versus Prefrontal Cortical Pyramidal Neurons. PLoS ONE, 2014, 9, e99208.                                     | 1.1 | 3         |
| 125 | The interplay between rapid and slow corticosteroid actions in brain. European Journal of Pharmacology, 2013, 719, 44-52.                                                                                      | 1.7 | 61        |
| 126 | Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends in Neurosciences, 2013, 36, 621-631.                                            | 4.2 | 157       |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Time-Dependent Effects of Cortisol on the Contextualization of Emotional Memories. Biological Psychiatry, 2013, 74, 809-816.                                                                                  | 0.7 | 90        |
| 128 | Time-dependent changes in altruistic punishment following stress. Psychoneuroendocrinology, 2013, 38, 1467-1475.                                                                                              | 1.3 | 100       |
| 129 | The effect of childhood maltreatment and cannabis use on adult psychotic symptoms is modified by the COMT Val158Met polymorphism. Schizophrenia Research, 2013, 150, 303-311.                                 | 1.1 | 62        |
| 130 | Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiology of Aging, 2013, 34, 1662-1673.                                                                              | 1.5 | 116       |
| 131 | Time-dependent effects of corticosterone on reward-based decision-making in a rodent model of the<br>Iowa Gambling Task. Neuropharmacology, 2013, 70, 306-315.                                                | 2.0 | 37        |
| 132 | Stressing new neurons into depression?. Molecular Psychiatry, 2013, 18, 396-397.                                                                                                                              | 4.1 | 26        |
| 133 | Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Molecular Psychiatry, 2013, 18, 993-1005.             | 4.1 | 129       |
| 134 | Stress Research: Past, Present, and Future. , 2013, , 1979-2007.                                                                                                                                              |     | 1         |
| 135 | Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7910-7915. | 3.3 | 105       |
| 136 | No Effects of Psychosocial Stress on Intertemporal Choice. PLoS ONE, 2013, 8, e78597.                                                                                                                         | 1.1 | 40        |
| 137 | Combined Î <sup>2</sup> -adrenergic and corticosteroid receptor activation regulates AMPA receptor function in hippocampal neurons. Journal of Psychopharmacology, 2012, 26, 516-524.                         | 2.0 | 25        |
| 138 | Corticosteroid Induced Decoupling of the Amygdala in Men. Cerebral Cortex, 2012, 22, 2336-2345.                                                                                                               | 1.6 | 64        |
| 139 | Unraveling the Time Domains of Corticosteroid Hormone Influences on Brain Activity: Rapid, Slow, and Chronic Modes. Pharmacological Reviews, 2012, 64, 901-938.                                               | 7.1 | 351       |
| 140 | From antipsychotic to anti-schizophrenia drugs: role of animal models. Trends in Pharmacological<br>Sciences, 2012, 33, 515-521.                                                                              | 4.0 | 30        |
| 141 | Stress sensitivity of childhood epilepsy is related to experienced negative life events. Epilepsia, 2012, 53, 1554-1562.                                                                                      | 2.6 | 31        |
| 142 | Stress effects on memory: An update and integration. Neuroscience and Biobehavioral Reviews, 2012, 36, 1740-1749.                                                                                             | 2.9 | 579       |
| 143 | Hippocampal GR expression is increased in elderly depressed females. Neuropharmacology, 2012, 62, 527-533.                                                                                                    | 2.0 | 42        |
| 144 | Maternal deprivation and dendritic complexity in the basolateral amygdala. Neuropharmacology, 2012, 62, 534-537.                                                                                              | 2.0 | 29        |

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Nothing Is Written in Stone. Biological Psychiatry, 2012, 72, 432-433.                                                                                                                            | 0.7  | 3         |
| 146 | Corticosteroid Actions on Neurotransmission. , 2012, , 415-431.                                                                                                                                   |      | 0         |
| 147 | Time-dependent effects of cortisol on selective attention and emotional interference: a functional MRI study. Frontiers in Integrative Neuroscience, 2012, 6, 66.                                 | 1.0  | 87        |
| 148 | Individual Variations in Maternal Care Early in Life Correlate with Later Life Decision-Making and c-Fos<br>Expression in Prefrontal Subregions of Rats. PLoS ONE, 2012, 7, e37820.               | 1.1  | 43        |
| 149 | Dendritic Morphology of Hippocampal and Amygdalar Neurons in Adolescent Mice Is Resilient to<br>Genetic Differences in Stress Reactivity. PLoS ONE, 2012, 7, e38971.                              | 1.1  | 65        |
| 150 | Stress-Induced Enhancement of Mouse Amygdalar Synaptic Plasticity Depends on Glucocorticoid and<br>ß-Adrenergic Activity. PLoS ONE, 2012, 7, e42143.                                              | 1.1  | 34        |
| 151 | A Single-Day Treatment with Mifepristone Is Sufficient to Normalize Chronic Glucocorticoid Induced Suppression of Hippocampal Cell Proliferation. PLoS ONE, 2012, 7, e46224.                      | 1.1  | 65        |
| 152 | Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance. Frontiers in Cellular Neuroscience, 2012, 6, 15.                          | 1.8  | 54        |
| 153 | Dynamically changing effects of corticosteroids on human hippocampal and prefrontal processing.<br>Human Brain Mapping, 2012, 33, 2885-2897.                                                      | 1.9  | 66        |
| 154 | Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 2012, 11, 141-168.                                     | 21.5 | 960       |
| 155 | Maternal Care Received by Individual Pups Correlates with Adult CA1 Dendritic Morphology and<br>Synaptic Plasticity in a Sexâ€Dependent Manner. Journal of Neuroendocrinology, 2012, 24, 331-340. | 1.2  | 32        |
| 156 | Corticosteroid effects on calcium signaling in limbic neurons. Cell Calcium, 2012, 51, 277-283.                                                                                                   | 1.1  | 33        |
| 157 | Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology, 2012, 350, 299-309.            | 1.6  | 233       |
| 158 | Glucocorticoid pulsatility and rapid corticosteroid actions in the central stress response.<br>Physiology and Behavior, 2012, 106, 73-80.                                                         | 1.0  | 43        |
| 159 | Within-litter variation in maternal care received by individual pups correlates with adolescent social play behavior in male rats. Physiology and Behavior, 2012, 106, 701-706.                   | 1.0  | 69        |
| 160 | Adult hippocampal glucocorticoid receptor expression and dentate synaptic plasticity correlate with maternal care received by individuals early in life. Hippocampus, 2012, 22, 255-266.          | 0.9  | 91        |
| 161 | The transcriptional response to chronic stress and glucocorticoid receptor blockade in the hippocampal dentate gyrus. Hippocampus, 2012, 22, 359-371.                                             | 0.9  | 81        |
| 162 | Stress and Memory: from Mechanisms to Long-Lasting Consequences. , 2012, , 191-202.                                                                                                               |      | 0         |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Stress and emotional memory: a matter of timing. Trends in Cognitive Sciences, 2011, 15, 280-288.                                                                                                                                      | 4.0 | 341       |
| 164 | Distinct structural plasticity in the hippocampus and amygdala of the middle-aged common marmoset<br>(Callithrix jacchus). Experimental Neurology, 2011, 230, 291-301.                                                                 | 2.0 | 50        |
| 165 | Regulation of excitatory synapses and fearful memories by stress hormones. Frontiers in Behavioral Neuroscience, 2011, 5, 62.                                                                                                          | 1.0 | 33        |
| 166 | Rapid Effects of Corticosterone in the Mouse Dentate Gyrus Via a Nongenomic Pathway. Journal of<br>Neuroendocrinology, 2011, 23, 143-147.                                                                                              | 1.2 | 49        |
| 167 | Impact of glucocorticoids on brain function: Relevance for mood disorders.<br>Psychoneuroendocrinology, 2011, 36, 406-414.                                                                                                             | 1.3 | 61        |
| 168 | Implications of psychosocial stress on memory formation in a typical male versus female student sample. Psychoneuroendocrinology, 2011, 36, 569-578.                                                                                   | 1.3 | 113       |
| 169 | Rapid non-genomic effects of corticosteroids and their role in the central stress response. Journal of Endocrinology, 2011, 209, 153-167.                                                                                              | 1.2 | 343       |
| 170 | Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats. Psychopharmacology, 2011, 214, 249-260.                                                                                        | 1.5 | 115       |
| 171 | Time-dependent corticosteroid modulation of prefrontal working memory processing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5801-5806.                                               | 3.3 | 169       |
| 172 | A Randomized Trial on Mineralocorticoid Receptor Blockade in Men: Effects on Stress Responses,<br>Selective Attention, and Memory. Neuropsychopharmacology, 2011, 36, 2720-2728.                                                       | 2.8 | 88        |
| 173 | Blocking Mineralocorticoid Receptors prior to Retrieval Reduces Contextual Fear Memory in Mice.<br>PLoS ONE, 2011, 6, e26220.                                                                                                          | 1.1 | 44        |
| 174 | Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nature Reviews<br>Neuroscience, 2010, 11, 718-726.                                                                                                           | 4.9 | 32        |
| 175 | The memory paradox. Nature Reviews Neuroscience, 2010, 11, 837-839.                                                                                                                                                                    | 4.9 | 14        |
| 176 | Chronic stress effects on hippocampal structure and synaptic function: relevance for depression and normalization by anti-glucocorticoid treatment. Frontiers in Synaptic Neuroscience, 2010, 2, 24.                                   | 1.3 | 73        |
| 177 | Severe Early Life Stress Hampers Spatial Learning and Neurogenesis, but Improves Hippocampal Synaptic<br>Plasticity and Emotional Learning under High-Stress Conditions in Adulthood. Journal of<br>Neuroscience, 2010, 30, 6635-6645. | 1.7 | 324       |
| 178 | Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proceedings of the<br>National Academy of Sciences of the United States of America, 2010, 107, 14449-14454.                                                | 3.3 | 292       |
| 179 | Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding. Neurobiology of Learning and Memory, 2010, 93, 56-65.                                                                      | 1.0 | 141       |
| 180 | Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice.<br>Neurobiology of Learning and Memory, 2010, 94, 530-537.                                                                                      | 1.0 | 75        |
|     |                                                                                                                                                                                                                                        |     |           |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Time-Dependent Effects of Corticosteroids on Human Amygdala Processing. Journal of Neuroscience, 2010, 30, 12725-12732.                                                                               | 1.7 | 211       |
| 182 | Opposite Effects of Early Maternal Deprivation on Neurogenesis in Male versus Female Rats. PLoS ONE, 2009, 4, e3675.                                                                                  | 1.1 | 165       |
| 183 | Â-Adrenergic facilitation of synaptic plasticity in the rat basolateral amygdala in vitro is gradually reversed by corticosterone. Learning and Memory, 2009, 16, 155-160.                            | 0.5 | 42        |
| 184 | Dissociation between Rat Hippocampal CA1 and Dentate Gyrus Cells in Their Response to<br>Corticosterone: Effects on Calcium Channel Protein and Current. Endocrinology, 2009, 150, 4615-4624.         | 1.4 | 30        |
| 185 | Stress selectively and lastingly promotes learning of context-related high arousing information.<br>Psychoneuroendocrinology, 2009, 34, 1152-1161.                                                    | 1.3 | 91        |
| 186 | Corticosteroid effects on cellular physiology of limbic cells. Brain Research, 2009, 1293, 91-100.                                                                                                    | 1.1 | 70        |
| 187 | Corticosterone reduces dendritic complexity in developing hippocampal CA1 neurons. Hippocampus, 2009, 19, 828-836.                                                                                    | 0.9 | 77        |
| 188 | Effects of corticosterone and the βâ€agonist isoproterenol on glutamate receptorâ€mediated synaptic<br>currents in the rat basolateral amygdala. European Journal of Neuroscience, 2009, 30, 800-807. | 1.2 | 30        |
| 189 | Fear conditioning enhances spontaneous AMPA receptorâ€mediated synaptic transmission in mouse<br>hippocampal CA1 area. European Journal of Neuroscience, 2009, 30, 1559-1564.                         | 1.2 | 31        |
| 190 | Stress, the hippocampus, and epilepsy. Epilepsia, 2009, 50, 586-597.                                                                                                                                  | 2.6 | 202       |
| 191 | Corticosteroid Actions on Electrical Activity in the Limbic Brain. , 2009, , 1397-1422.                                                                                                               |     | 0         |
| 192 | Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat<br>hippocampal dentate gyrus. Neurobiology of Learning and Memory, 2009, 92, 292-300.                  | 1.0 | 196       |
| 193 | Fundamental aspects of the impact of glucocorticoids on the (immature) brain. Seminars in Fetal and<br>Neonatal Medicine, 2009, 14, 136-142.                                                          | 1.1 | 80        |
| 194 | The neuro-symphony of stress. Nature Reviews Neuroscience, 2009, 10, 459-466.                                                                                                                         | 4.9 | 1,243     |
| 195 | Stressed Memories: How Acute Stress Affects Memory Formation in Humans. Journal of Neuroscience, 2009, 29, 10111-10119.                                                                               | 1.7 | 258       |
| 196 | S.10.01 A dual role for mineralocorticoid receptors in the limbic brain. European Neuropsychopharmacology, 2009, 19, S193.                                                                            | 0.3 | 0         |
| 197 | Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity. PLoS ONE, 2009, 4, e4714.                                                                                     | 1.1 | 113       |
|     |                                                                                                                                                                                                       |     |           |

Adrenal Steroids: Biphasic Effects on Neurons. , 2009, , 131-134.

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Serotonin and Carbachol Induced Suppression of Synaptic Excitability in Rat CA1 Hippocampal Area:<br>Effects of Corticosteroid Receptor Activation. Journal of Neuroendocrinology, 2008, 10, 9-19.                                                  | 1.2 | 11        |
| 200 | Opposite effects of glucocorticoid receptor activation on hippocampal CA1 dendritic complexity in chronically stressed and handled animals. Hippocampus, 2008, 18, 20-28.                                                                           | 0.9 | 40        |
| 201 | Maternal Care and Hippocampal Plasticity: Evidence for Experience-Dependent Structural Plasticity,<br>Altered Synaptic Functioning, and Differential Responsiveness to Glucocorticoids and Stress. Journal<br>of Neuroscience, 2008, 28, 6037-6045. | 1.7 | 626       |
| 202 | Rapid changes in hippocampal CA1 pyramidal cell function via pre―as well as postsynaptic membrane<br>mineralocorticoid receptors. European Journal of Neuroscience, 2008, 27, 2542-2550.                                                            | 1.2 | 163       |
| 203 | Corticosteroid hormones in the central stress response: Quick-and-slow. Frontiers in Neuroendocrinology, 2008, 29, 268-272.                                                                                                                         | 2.5 | 327       |
| 204 | Functional actions of corticosteroids in the hippocampus. European Journal of Pharmacology, 2008, 583, 312-321.                                                                                                                                     | 1.7 | 172       |
| 205 | The concept of allostasis and allostatic load. European Journal of Pharmacology, 2008, 583, 173.                                                                                                                                                    | 1.7 | 7         |
| 206 | The coming out of the brain mineralocorticoid receptor. Trends in Neurosciences, 2008, 31, 1-7.                                                                                                                                                     | 4.2 | 428       |
| 207 | Differential Effects of Corticosterone on the Slow Afterhyperpolarization in the Basolateral<br>Amygdala and CA1 Region: Possible Role of Calcium Channel Subunits. Journal of Neurophysiology,<br>2008, 99, 958-968.                               | 0.9 | 50        |
| 208 | Brief RU 38486 Treatment Normalizes the Effects of Chronic Stress on Calcium Currents in Rat<br>Hippocampal CA1 Neurons. Neuropsychopharmacology, 2007, 32, 1830-1839.                                                                              | 2.8 | 38        |
| 209 | Corticosterone time-dependently modulates Â-adrenergic effects on long-term potentiation in the hippocampal dentate gyrus. Learning and Memory, 2007, 14, 359-367.                                                                                  | 0.5 | 67        |
| 210 | Corticosteroid hormones, synaptic strength and emotional memories: corticosteroid modulation of memory $\hat{a} \in $ " a cellular and molecular perspective. Progress in Brain Research, 2007, 167, 269-271.                                       | 0.9 | 10        |
| 211 | Tauâ€4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau<br>knockin/ knockout mice. FASEB Journal, 2007, 21, 2149-2161.                                                                                     | 0.2 | 62        |
| 212 | Stress-induced changes in hippocampal function. Progress in Brain Research, 2007, 167, 3-15.                                                                                                                                                        | 0.9 | 94        |
| 213 | Role of corticosteroid hormones in the dentate gyrus. Progress in Brain Research, 2007, 163, 355-370.                                                                                                                                               | 0.9 | 63        |
| 214 | Glucocorticoids Specifically Enhance L-Type Calcium Current Amplitude and Affect Calcium Channel<br>Subunit Expression in the Mouse Hippocampus. Journal of Neurophysiology, 2007, 97, 5-14.                                                        | 0.9 | 98        |
| 215 | Dissociation between apoptosis, neurogenesis, and synaptic potentiation in the dentate gyrus of adrenalectomized rats. Synapse, 2007, 61, 221-230.                                                                                                  | 0.6 | 30        |
| 216 | Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. European Journal of Neuroscience, 2007, 26, 3395-3401.                                                      | 1.2 | 199       |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Rapid glucocorticoid effects on the expression of hippocampal neurotransmission-related genes.<br>Brain Research, 2007, 1150, 14-20.                                                                                | 1.1 | 19        |
| 218 | Chronic stress: Implications for neuronal morphology, function and neurogenesis. Frontiers in Neuroendocrinology, 2007, 28, 72-96.                                                                                  | 2.5 | 313       |
| 219 | Modeling stress-induced adaptations in Ca2+ dynamics. Neurocomputing, 2007, 70, 1640-1644.                                                                                                                          | 3.5 | 3         |
| 220 | LTP after Stress: Up or Down?. Neural Plasticity, 2007, 2007, 1-6.                                                                                                                                                  | 1.0 | 105       |
| 221 | Control of IsAHP in mouse hippocampus CA1 pyramidal neurons by RyR3-mediated calcium-induced calcium release. Pflugers Archiv European Journal of Physiology, 2007, 455, 297-308.                                   | 1.3 | 25        |
| 222 | Hippocampus, Corticosteroid Effects on. , 2007, , 321-326.                                                                                                                                                          |     | 0         |
| 223 | Effect of brief corticosterone administration on SGK1 and RGS4 mRNA expression in rat hippocampus.<br>Stress, 2006, 9, 165-170.                                                                                     | 0.8 | 26        |
| 224 | Learning under stress: how does it work?. Trends in Cognitive Sciences, 2006, 10, 152-158.                                                                                                                          | 4.0 | 766       |
| 225 | Corticosteroid effects in the brain: U-shape it. Trends in Pharmacological Sciences, 2006, 27, 244-250.                                                                                                             | 4.0 | 335       |
| 226 | Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic plasticity after exposure to chronic stress. European Journal of Neuroscience, 2006, 23, 3051-3055.                                  | 1.2 | 86        |
| 227 | The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. Journal of Neurochemistry, 2006, 99, 1282-1298.                                                           | 2.1 | 46        |
| 228 | Acute Activation of Hippocampal Glucocorticoid Receptors Results in Different Waves of Gene<br>Expression Throughout Time. Journal of Neuroendocrinology, 2006, 18, 239-252.                                        | 1.2 | 143       |
| 229 | Brief Treatment With the Glucocorticoid Receptor Antagonist Mifepristone Normalises the<br>Corticosterone-Induced Reduction of Adult Hippocampal Neurogenesis. Journal of<br>Neuroendocrinology, 2006, 18, 629-631. | 1.2 | 162       |
| 230 | Effect of Chronic Stress and Mifepristone Treatment on Voltage-Dependent Ca2+Currents in Rat<br>Hippocampal Dentate Gyrus. Journal of Neuroendocrinology, 2006, 18, 732-741.                                        | 1.2 | 33        |
| 231 | No effect of prolonged corticosterone over-exposure on NCAM, SGK1, and RGS4 mRNA expression in rat hippocampus. Brain Research, 2006, 1093, 161-166.                                                                | 1.1 | 7         |
| 232 | Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiology of Disease, 2006, 24, 1-14.                                       | 2.1 | 307       |
| 233 | Stress, Depression and Hippocampal Apoptosis. CNS and Neurological Disorders - Drug Targets, 2006, 5, 531-546.                                                                                                      | 0.8 | 201       |
| 234 | Improved Long-Term Potentiation and Memory in Young Tau-P301L Transgenic Mice before Onset of Hyperphosphorylation and Tauopathy. Journal of Neuroscience, 2006, 26, 3514-3523.                                     | 1.7 | 149       |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus. Learning and Memory, 2006, 13, 110-113.                                                                                        | 0.5 | 145       |
| 236 | Modulation of glutamatergic and GABAergic neurotransmission by corticosteroid hormones and stress. Handbook of Behavioral Neuroscience, 2005, , 525-544.                                                                                  | 0.0 | 2         |
| 237 | Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. European Journal of Neuroscience, 2005, 21, 1304-1314.                                                   | 1.2 | 193       |
| 238 | Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience, 2005, 6, 463-475.                                                                                                                                          | 4.9 | 3,857     |
| 239 | GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. European Journal of Neuroscience, 2005, 21, 113-121.                                                            | 1.2 | 92        |
| 240 | Corticosterone shifts different forms of synaptic potentiation in opposite directions. Hippocampus, 2005, 15, 697-703.                                                                                                                    | 0.9 | 87        |
| 241 | Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19204-19207. | 3.3 | 706       |
| 242 | Corticosterone Slowly Enhances Miniature Excitatory Postsynaptic Current Amplitude in Mice CA1<br>Hippocampal Cells. Journal of Neurophysiology, 2005, 94, 3479-3486.                                                                     | 0.9 | 154       |
| 243 | Glucocorticoid receptor activation selectively hampers N-methyl-d-aspartate receptor dependent hippocampal synaptic plasticity in vitro. Neuroscience, 2005, 135, 403-411.                                                                | 1.1 | 76        |
| 244 | Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. European Journal of Neuroscience, 2004, 20, 1665-1673.                                                            | 1.2 | 151       |
| 245 | Gene expression profiles associated with survival of individual rat dentate cells after endogenous corticosteroid deprivation. European Journal of Neuroscience, 2004, 20, 3233-3243.                                                     | 1.2 | 18        |
| 246 | Chronic unpredictable stress alters gene expression in rat single dentate granule cells. Journal of Neurochemistry, 2004, 89, 364-374.                                                                                                    | 2.1 | 49        |
| 247 | Mineralocorticoid and Glucocorticoid Receptor-Mediated Effects on Serotonergic Transmission in Health and Disease. Annals of the New York Academy of Sciences, 2004, 1032, 301-303.                                                       | 1.8 | 22        |
| 248 | Effect of early life stress on serotonin responses in the hippocampus of young adult rats. Synapse, 2004, 53, 11-19.                                                                                                                      | 0.6 | 44        |
| 249 | Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. European Journal of Neuroscience, 2004, 19, 131-144.                                                               | 1.2 | 286       |
| 250 | Increased P27KIP1 protein expression in the dentate gyrus of chronically stressed rats indicates G1 arrest involvement. Neuroscience, 2004, 129, 593-601.                                                                                 | 1.1 | 48        |
| 251 | Effects of Chronic Stress on Structure and Cell Function in Rat Hippocampus and Hypothalamus.<br>Stress, 2004, 7, 221-231.                                                                                                                | 0.8 | 281       |
| 252 | Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate<br>gyrus, in absence of an age-related hypothalamus–pituitary–adrenal axis activation. Neurobiology of<br>Aging, 2004, 25, 361-375.  | 1.5 | 288       |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Hippocampal and Hypothalamic Function after Chronic Stress. Annals of the New York Academy of Sciences, 2003, 1007, 367-378.                                                         | 1.8 | 32        |
| 254 | Gene expression patterns in rat dentate granule cells: comparison between fresh and fixed tissue.<br>Journal of Neuroscience Methods, 2003, 131, 205-211.                            | 1.3 | 9         |
| 255 | Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrusin vitro. European Journal of Neuroscience, 2003, 17, 1928-1934.            | 1.2 | 230       |
| 256 | Acute stress increases calcium current amplitude in rat hippocampus: temporal changes in physiology and gene expression. European Journal of Neuroscience, 2003, 18, 1315-1324.      | 1.2 | 74        |
| 257 | Gene expression changes in single dentate granule neurons after adrenalectomy of rats. Molecular<br>Brain Research, 2003, 111, 17-23.                                                | 2.5 | 6         |
| 258 | Chronic unpredictable stress causes attenuation of serotonin responses in cornu ammonis 1 pyramidal neurons. Neuroscience, 2003, 120, 649-658.                                       | 1.1 | 56        |
| 259 | Effect of Chronic Stress on Synaptic Currents in Rat Hippocampal Dentate Gyrus Neurons. Journal of<br>Neurophysiology, 2003, 89, 625-633.                                            | 0.9 | 108       |
| 260 | Effect of Adrenalectomy on Miniature Inhibitory Postsynaptic Currents in the Paraventricular<br>Nucleus of the Hypothalamus. Journal of Neurophysiology, 2003, 89, 237-245.          | 0.9 | 32        |
| 261 | Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation. Neuroscience, 2002, 115, 1119-1126.                                        | 1.1 | 125       |
| 262 | Hippocampal Serotonin Responses in Short and Long Attack Latency Mice. Journal of Neuroendocrinology, 2002, 14, 234-239.                                                             | 1.2 | 38        |
| 263 | Glucocorticoids alter calcium conductances and calcium channel subunit expression in basolateral amygdala neurons. European Journal of Neuroscience, 2002, 16, 1083-1089.            | 1.2 | 106       |
| 264 | Reduced field response to perforant path stimulation after adrenalectomy: Effect of nimodipine treatment. Synapse, 2002, 44, 1-7.                                                    | 0.6 | 3         |
| 265 | Corticosteroid Actions on Electrical Activity in the Brain. , 2002, , 601-626.                                                                                                       |     | 0         |
| 266 | Morphological and functional properties of rat dentate granule cells after adrenalectomy.<br>Neuroscience, 2001, 108, 263-272.                                                       | 1.1 | 29        |
| 267 | Effect of Adrenalectomy on Membrane Properties and Synaptic Potentials in Rat Dentate Granule<br>Cells. Journal of Neurophysiology, 2001, 85, 699-707.                               | 0.9 | 19        |
| 268 | Effect of Corticosteroid Treatment In Vitro on Adrenalectomy-Induced Impairment of Synaptic Transmission in the Rat Dentate Gyrus. Journal of Neuroendocrinology, 2001, 12, 199-205. | 1.2 | 22        |
| 269 | Corticosteroid Effects on Serotonin Responses in Granule Cells of the Rat Dentate Gyrus. Journal of Neuroendocrinology, 2001, 13, 233-238.                                           | 1.2 | 15        |
| 270 | Corticosteroid Actions in the Hippocampus. Journal of Neuroendocrinology, 2001, 13, 657-669.                                                                                         | 1.2 | 174       |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Calcium currents in rat dentate granule cells are altered after adrenalectomy. European Journal of Neuroscience, 2001, 14, 503-512.                                                                                     | 1.2 | 21        |
| 272 | Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory.<br>Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12790-12795.           | 3.3 | 262       |
| 273 | The Corticosterone Synthesis Inhibitor Metyrapone Prevents Hypoxia/Ischemia-Induced Loss of Synaptic Function in the Rat Hippocampus. Stroke, 2000, 31, 1162-1172.                                                      | 1.0 | 95        |
| 274 | Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers.<br>Nature Neuroscience, 2000, 3, 977-978.                                                                              | 7.1 | 155       |
| 275 | Field responses to perforant path stimulation in the rat dentate gyrus: role of corticosterone and NMDA-receptor activation. Brain Research, 2000, 854, 230-234.                                                        | 1.1 | 5         |
| 276 | Modulatory actions of steroid hormones and neuropeptides on electrical activity in brain. European<br>Journal of Pharmacology, 2000, 405, 207-216.                                                                      | 1.7 | 24        |
| 277 | Long-term exposure to high corticosterone levels attenuates serotonin responses in rat hippocampal CA1 neurons. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13456-13461. | 3.3 | 134       |
| 278 | Episodic corticosterone treatment accelerates kindling epileptogenesis and triggers long-term<br>changes in hippocampal CA1 cells, in the fully kindled state. European Journal of Neuroscience, 1999, 11,<br>889-898.  | 1.2 | 87        |
| 279 | Postischemic Steroid Modulation: Effects on Hippocampal Neuronal Integrity and Synaptic Plasticity.<br>Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1072-1082.                                              | 2.4 | 20        |
| 280 | Effect of long-term elevated corticosteroid levels on field responses to synaptic stimulation, in the rat CA1 hippocampal area. Neuroscience Letters, 1999, 265, 41-44.                                                 | 1.0 | 17        |
| 281 | Stress and cognition: are corticosteroids good or bad guys?. Trends in Neurosciences, 1999, 22, 422-426.                                                                                                                | 4.2 | 1,186     |
| 282 | Corticosteroids in the brain. Molecular Neurobiology, 1998, 17, 87-108.                                                                                                                                                 | 1.9 | 48        |
| 283 | Synaptic transmission in the rat dentate gyrus after adrenalectomy. Neuroscience, 1998, 85, 1061-1071.                                                                                                                  | 1.1 | 37        |
| 284 | Brain Corticosteroid Receptor Balance in Health and Disease*. Endocrine Reviews, 1998, 19, 269-301.                                                                                                                     | 8.9 | 1,922     |
| 285 | Serotonin and Carbachol Induced Suppression of Synaptic Responses in Rat CA1 Hippocampal Area:<br>Effects of Corticosteroid Receptor ActivationIn Vivo. Stress, 1998, 2, 183-200.                                       | 0.8 | 6         |
| 286 | Corticosteroid Regulation of Ion Channel Conductances and mRNA Levels in Individual Hippocampal CA1 Neurons. Journal of Neuroscience, 1998, 18, 2685-2696.                                                              | 1.7 | 118       |
| 287 | Altered synaptic plasticity in hippocampal CA1 area of apolipoprotein E deficient mice. NeuroReport, 1997, 8, 2505-2510.                                                                                                | 0.6 | 64        |
| 288 | Effect of Adrenalectomy in Kindled Rats. Neuroendocrinology, 1997, 66, 348-359.                                                                                                                                         | 1.2 | 12        |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Effect of ORG 34116, a corticosteroid receptor antagonist, on hippocampal Ca2+ currents. European<br>Journal of Pharmacology, 1997, 339, 17-26.                                       | 1.7 | 12        |
| 290 | Glucocorticoid Feedback Resistance. Trends in Endocrinology and Metabolism, 1997, 8, 26-33.                                                                                           | 3.1 | 49        |
| 291 | Regulation of hippocampal 5-HT1A receptor mRNA and binding in transgenic mice with a targeted disruption of the glucocorticoid receptor. Molecular Brain Research, 1997, 46, 290-296. | 2.5 | 45        |
| 292 | Corticosteroid effects on sodium and calcium currents in acutely dissociated rat CA1 hippocampal neurons. Neuroscience, 1997, 78, 663-672.                                            | 1.1 | 29        |
| 293 | Spatial Learning Deficits in Mice with a Targeted Glucocorticoid Receptor Gene Disruption. European<br>Journal of Neuroscience, 1997, 9, 2284-2296.                                   | 1.2 | 106       |
| 294 | Corticosteroid effects on electrical properties of brain cells: Temporal aspects and role of antiglucocorticoids. Psychoneuroendocrinology, 1997, 22, S81-S86.                        | 1.3 | 23        |
| 295 | Steroid Hormones and Excitability in the Mammalian Brain. Frontiers in Neuroendocrinology, 1997, 18, 2-48.                                                                            | 2.5 | 257       |
| 296 | Effects of adrenalectomy on Ca2+ currents and Ca2+ channel subunit mRNA expression in hippocampal<br>CA1 neurons of young rats. Synapse, 1997, 26, 155-164.                           | 0.6 | 12        |
| 297 | Effects of adrenalectomy on Ca2+ currents and Ca2+ channel subunit mRNA expression in hippocampal CA1 neurons of young rats. , 1997, 26, 155.                                         |     | 2         |
| 298 | Corticosteroid actions on the expression of kainate receptor subunit mRNAs in rat hippocampus.<br>Molecular Brain Research, 1996, 37, 15-20.                                          | 2.5 | 23        |
| 299 | Hippocampal Cell Responses in Mice with a Targeted Glucocorticoid Receptor Gene Disruption. Journal of Neuroscience, 1996, 16, 6766-6774.                                             | 1.7 | 49        |
| 300 | Corticosteroid hormones in neuroprotection and brain damage. Current Opinion in Endocrinology,<br>Diabetes and Obesity, 1996, 3, 184-832.                                             | 0.6 | 16        |
| 301 | Modulation of 5HT1AResponsiveness in CA1 Pyramidal Neurons byin vivoActivation of Corticosteroid Receptors. Journal of Neuroendocrinology, 1996, 8, 433-438.                          | 1.2 | 72        |
| 302 | Cholinergic Responsiveness of Rat CA1 Hippocampal NeuronsIn Vitro: Modulation by Corticosterone and Stress. Stress, 1996, 1, 65-72.                                                   | 0.8 | 22        |
| 303 | Corticosteroid-mediated modulation of carbachol responsiveness in CA1 pyramidal neurons: A voltage clamp analysis. Synapse, 1995, 20, 299-304.                                        | 0.6 | 6         |
| 304 | Effects of estradiol and progesterone on voltage-gated calcium and potassium conductances in rat CA1 hippocampal neurons. Journal of Neuroscience, 1995, 15, 4289-4297.               | 1.7 | 80        |
| 305 | Long-term control of neuronal excitability by corticosteroid hormones. Journal of Steroid<br>Biochemistry and Molecular Biology, 1995, 53, 315-323.                                   | 1.2 | 31        |
| 306 | Corticosteroid Hormones: Endocrine Messengers in the Brain. Physiology, 1995, 10, 71-76.                                                                                              | 1.6 | 2         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons.<br>Brain Research, 1994, 649, 234-242.                                            | 1.1 | 112       |
| 308 | Philanthotoxin inhibits Ca2+ currents in rat hippocampal CA1 neurons. European Journal of<br>Pharmacology - Environmental Toxicology and Pharmacology Section, 1994, 270, 357-360. | 0.8 | 4         |
| 309 | Steroids and electrical activity in the brain. Journal of Steroid Biochemistry and Molecular Biology, 1994, 49, 391-398.                                                           | 1.2 | 24        |
| 310 | Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Progress in Neurobiology, 1994, 43, 1-36.                  | 2.8 | 369       |
| 311 | Geneâ€Mediated Control of Hippocampal Neuronal Excitability. Annals of the New York Academy of Sciences, 1994, 746, 166-175.                                                       | 1.8 | 9         |
| 312 | Modulation of Carbachol Responsiveness by Corticosteroid Hormones in Rat CA1 Pyramidal Neurons.<br>Annals of the New York Academy of Sciences, 1994, 746, 460-462.                 | 1.8 | 0         |
| 313 | Gene-Mediated Steroid Control of Neuronal Activity. Methods in Neurosciences, 1994, , 435-445.                                                                                     | 0.5 | 1         |
| 314 | Functional implications of brain corticosteroid receptor diversity. Cellular and Molecular<br>Neurobiology, 1993, 13, 433-455.                                                     | 1.7 | 193       |
| 315 | Decreased Population Spike in CA1 Hippocampal Area of Adrenalectomized Rats after Repeated Synaptic<br>Stimulation. Journal of Neuroendocrinology, 1993, 5, 537-543.               | 1.2 | 17        |
| 316 | Modulation of carbachol responsiveness in rat CA1 pyramidal neurons by corticosteroid hormones.<br>Brain Research, 1993, 627, 159-167.                                             | 1.1 | 31        |
| 317 | Long-term control by corticosteroids of the inward rectifier in rat CA1 pyramidal neurons, in vitro.<br>Brain Research, 1993, 612, 172-179.                                        | 1.1 | 37        |
| 318 | Low-threshold calcium current in dendrites of the adult rat hippocampus. Neuroscience Letters, 1993,<br>164, 154-158.                                                              | 1.0 | 66        |
| 319 | Bicuculline increases the intracellular calcium response of CA1 hippocampal neurons to synaptic stimulation. Neuroscience Letters, 1993, 155, 230-233.                             | 1.0 | 17        |
| 320 | Corticosteroid actions on amino acid-mediated transmission in rat CA1 hippocampal cells. Journal of Neuroscience, 1993, 13, 4082-4090.                                             | 1.7 | 74        |
| 321 | Coordinative Mineralocorticoid and Glucocorticoid Receptor-Mediated Control of Responses to Serotonin in Rat Hippocampus. Neuroendocrinology, 1992, 55, 344-350.                   | 1.2 | 109       |
| 322 | Control of neuronal excitability by corticosteroid hormones. Trends in Neurosciences, 1992, 15, 25-30.                                                                             | 4.2 | 377       |
| 323 | Effect of corticosteroid hormones on electrical activity in rat hippocampus. Journal of Steroid<br>Biochemistry and Molecular Biology, 1991, 40, 83-86.                            | 1.2 | 52        |
| 324 | The induction of corticosteroid actions on membrane properties of hippocampal CA1 neurons requires protein synthesis. Neuroscience Letters, 1991, 130, 27-31.                      | 1.0 | 73        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Increased effect of noradrenaline on synaptic responses in rat CA1 hippocampal area after adrenalectomy. Brain Research, 1991, 550, 347-352.                                                                   | 1.1 | 13        |
| 326 | Mineralocorticoid hormones suppress serotonin-induced hyperpolarization of rat hippocampal CA1 neurons. Journal of Neuroscience, 1991, 11, 2288-2294.                                                          | 1.7 | 152       |
| 327 | Implication of brain corticosteroid receptor diversity for the adaptation syndrome concept. Methods and Achievements in Experimental Pathology, 1991, 14, 104-32.                                              | 0.3 | 14        |
| 328 | Mineralocorticoid receptor-mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4495-4498. | 3.3 | 161       |
| 329 | Corticosterone affects cellular responses of rat CA1 hippocampal cells to serotonin. European<br>Journal of Pharmacology, 1990, 183, 2021.                                                                     | 1.7 | 1         |
| 330 | Somatostatin immunohistochemistry of hippocampal slices with Lucifer Yellow-stained pyramidal neurons responding to somatostatin. Regulatory Peptides, 1990, 28, 215-221.                                      | 1.9 | 12        |
| 331 | Eltoprazine suppresses hyperpolarizing responses to serotonin in rat hippocampus. Journal of<br>Pharmacology and Experimental Therapeutics, 1990, 253, 284-9.                                                  | 1.3 | 4         |
| 332 | Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science, 1989, 245, 1502-1505.                                                                                           | 6.0 | 379       |
| 333 | Unique properties of non-N-methyl-D-aspartate excitatory responses in cultured purkinje neurons<br>Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3404-3408.       | 3.3 | 32        |
| 334 | Actions of serotonin recorded intracellularly in rat dorsal lateral septal neurons. Synapse, 1988, 2,<br>45-53.                                                                                                | 0.6 | 26        |
| 335 | Estrogen priming affects active membrane properties of medial amygdala neurons. Brain Research, 1988, 440, 380-385.                                                                                            | 1.1 | 51        |
| 336 | Neuronal membrane sensitivity to a salmon calcitonin analogue with negligible ability to lower serum calcium. Neuroscience Letters, 1988, 86, 82-88.                                                           | 1.0 | 6         |
| 337 | Somatostatin augments the M-current in hippocampal neurons. Science, 1988, 239, 278-280.                                                                                                                       | 6.0 | 205       |
| 338 | N-acetyl-aspartylglutamate: binding sites and excitatory action in the dorsolateral septum of rats.<br>Brain Research, 1987, 403, 192-197.                                                                     | 1.1 | 36        |
| 339 | Effect of serotonin and serotonin analogues on passive membrane properties of lateral septal neurons in vitro. Brain Research, 1987, 417, 99-107.                                                              | 1.1 | 50        |
| 340 | Electrophysiological Actions of Vasopressin in Extrahypothalamic Regions of the Central Nervous<br>System. , 1987, , 257-274.                                                                                  |     | 5         |
| 341 | Multiple actions of serotonin on lateral septal neurons in rat brain. European Journal of<br>Pharmacology, 1986, 129, 203-204.                                                                                 | 1.7 | 14        |
| 342 | Monoamine-induced responses in lateral septal neurons: Influence of iontophoretically applied vasopressin. Brain Research, 1985, 344, 120-126.                                                                 | 1.1 | 39        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Topographic organization of fimbria-fornix fibers projecting to the lateral septum of rats: A single<br>and field response analysis. Experimental Neurology, 1985, 87, 474-486.                                          | 2.0 | 9         |
| 344 | Electrophysiological and pharmacological evidence in favor of amino acid neurotransmission in<br>fimbria-fornix fibers innervating the lateral septal complex of rats. Experimental Brain Research, 1984,<br>54, 455-62. | 0.7 | 64        |
| 345 | Amino acid neurotransmission between fimbria-fornix fibers and neurons in the lateral septum of the rat: A microiontophoretic study. Experimental Neurology, 1984, 84, 126-139.                                          | 2.0 | 28        |
| 346 | Arginine8-vasopressin enhances the responses of lateral septal neurons in the rat to excitatory amino acids and fimbria-fornix stimuli. Brain Research, 1984, 311, 201-209.                                              | 1.1 | 61        |
| 347 | The effect of microiontophoretically applied vasopressin and oxytocin on single neurones in the septum and dorsal hippocampus of the rat. Neuroscience Letters, 1982, 33, 79-84.                                         | 1.0 | 99        |
| 348 | Time-Dependent Effect of Hydrocortisone Administration on Intertemporal Choice. SSRN Electronic<br>Journal, O, , .                                                                                                       | 0.4 | 15        |