Didier A Hauglustaine

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4706346/didier-a-hauglustaine-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

12,677 56 112 113 h-index g-index citations papers 6.8 14,166 114 5.41 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
113	Evaluation and Global-Scale Observation of Nitrous Oxide from IASI on Metop-A. <i>Remote Sensing</i> , 2022 , 14, 1403	5	
112	Global modelling of soil carbonyl sulfide exchanges. <i>Biogeosciences</i> , 2022 , 19, 2427-2463	4.6	4
111	On the contribution of global aviation to the CO2 radiative forcing of climate. <i>Atmospheric Environment</i> , 2021 , 267, 118762	5.3	O
110	Recent ozone trends in the Chinese free troposphere: role of the local emission reductions and meteorology. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16001-16025	6.8	O
109	Predicting the effect of confinement on the COVID-19 spread using machine learning enriched with satellite air pollution observations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
108	Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. <i>Journal of Advances in Modeling Earth Systems</i> , 2020 , 12, e2019MS002010	7.1	188
107	Implementation of the CMIP6 Forcing Data in the IPSL-CM6A-LR Model. <i>Journal of Advances in Modeling Earth Systems</i> , 2020 , 12, e2019MS001940	7.1	45
106	Daily CO Emission Reduction Indicates the Control of Activities to Contain COVID-19 in China. <i>Innovation(China)</i> , 2020 , 1, 100062	17.8	14
105	Identification of the major HO radical pathways in an indoor air environment. <i>Indoor Air</i> , 2017 , 27, 434-4	14524	15
104	Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. <i>Global Change Biology</i> , 2017 , 23, 4854-4872	11.4	95
103	The compact Earth system model OSCAR'v2.2: description and first results. <i>Geoscientific Model Development</i> , 2017 , 10, 271-319	6.3	30
102	Assessment of indoor HONO formation mechanisms based on in situ measurements and modeling. <i>Indoor Air</i> , 2017 , 27, 443-451	5.4	14
101	Summertime upper tropospheric nitrous oxide over the Mediterranean as a footprint of Asian emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4746-4759	4.4	3
100	The compact Earth system model OSCAR v2.2: description and first results 2016 ,		2
99	Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 14169-14202	6.8	58
98	The contribution of Chinaß emissions to global climate forcing. <i>Nature</i> , 2016 , 531, 357-61	50.4	145
97	Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management. <i>Biogeosciences</i> , 2016 , 13, 3757-3776	4.6	23

(2011-2016)

96	Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 7254-7283	4.4	62
95	Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Ni B . <i>Geophysical Research Letters</i> , 2016 , 43, 10,472-10,479	4.9	50
94	Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming. <i>Geophysical Research Letters</i> , 2015 , 42, 10745-10754	4.9	35
93	Sources, transport and deposition of iron in the global atmosphere. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6247-6270	6.8	62
92	Effects of urban land expansion on the regional meteorology and air quality of eastern China. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8597-8614	6.8	52
91	Assessment of the impact of oxidation processes on indoor air pollution using the new time-resolved INCA-Indoor model. <i>Atmospheric Environment</i> , 2015 , 122, 521-530	5.3	32
90	A multi-scale health impact assessment of air pollution over the 21st century. <i>Science of the Total Environment</i> , 2015 , 514, 439-49	10.2	46
89	A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 11031-11063	6.8	119
88	Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 11427-11446	6.8	19
87	Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. <i>Climate Dynamics</i> , 2013 , 40, 2123-2165	4.2	1185
86	Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. <i>Climate Dynamics</i> , 2013 , 40, 2223-2250	4.2	140
85	Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 1853-1877	6.8	598
84	A new Himalayan ice core CH₄ record: possible hints at the preindustrial latitudinal gradient. <i>Climate of the Past</i> , 2013 , 9, 2549-2554	3.9	9
83	Boundary layer ozone pollution caused by future aircraft emissions. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	5
82	Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4493-4512	6.8	20
81	Corrigendum to "Source attribution of the changes in atmospheric methane for 2006\(\mathbb{Q}\)008" published in Atmos. Chem. Phys., 11, 3689\(\mathbb{B}\)700, 2011. Atmospheric Chemistry and Physics, 2012, 12, 9381-9382	6.8	
80	A three-dimensional synthesis inversion of the molecular hydrogen cycle: Sources and sinks budget and implications for the soil uptake. <i>Journal of Geophysical Research</i> , 2011 , 116,		15
79	Source attribution of the changes in atmospheric methane for 2006\(\textit{\pi}\)008. Atmospheric Chemistry and Physics, 2011, 11, 3689-3700	6.8	224

78	Present and future impact of aircraft, road traffic and shipping emissions on global tropospheric ozone. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 11681-11705	6.8	33
77	African CO emissions between years 2000 and 2006 as estimated from MOPITT observations. <i>Biogeosciences</i> , 2009 , 6, 103-111	4.6	51
76	Parameterization of plume chemistry into large-scale atmospheric models: Application to aircraft NOx emissions. <i>Journal of Geophysical Research</i> , 2009 , 114,		33
75	Multimodel estimates of intercontinental source-receptor relationships for ozone pollution. <i>Journal of Geophysical Research</i> , 2009 , 114,		378
74	The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3113-3136	6.8	114
73	Multi-species inversion of CH₄, CO and H₂ emissions from surface measurements. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5281-5297	6.8	92
72	CO emission and export from Asia: an analysis combining complementary satellite measurements (MOPITT, SCIAMACHY and ACE-FTS) with global modeling. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5187-5204	6.8	53
71	The impact of lateral carbon fluxes on the European carbon balance. <i>Biogeosciences</i> , 2008 , 5, 1259-1271	4.6	104
70	Relative contributions of biomass burning emissions and atmospheric transport to carbon monoxide interannual variability. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	29
69	Chapter 2.13 Modelling regional air quality over decades: Past and future trends in photochemical smog. <i>Developments in Environmental Science</i> , 2007 , 6, 210-219		3
68	The influence of biogenic emissions on upper-tropospheric methanol as revealed from space. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 6119-6129	6.8	41
67	Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 757-780	6.8	104
66	ACE-FTS observation of a young biomass burning plume: first reported measurements of C ₂ H ₄ , C ₃ H ₆ O, H ₂ CO and PAN by	6.8	104
65	infrared occultation from space. Atmospheric Chemistry and Physics, 2007, 7, 5437-5446 Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate. Comptes Rendus - Geoscience, 2007, 339, 747-763	1.4	41
64	Human mortality effects of future concentrations of tropospheric ozone. <i>Comptes Rendus - Geoscience</i> , 2007 , 339, 775-783	1.4	64
63	Impact of global climate change on regional air quality: Introduction to the thematic issue. <i>Comptes Rendus - Geoscience</i> , 2007 , 339, 703-708	1.4	12
62	Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels. <i>Comptes Rendus - Geoscience</i> , 2007 , 339, 709-720	1.4	11
61	Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. <i>Global Biogeochemical Cycles</i> , 2006 , 20, n/a-n/a	5.9	99

(2005-2006)

60	Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. <i>Global Biogeochemical Cycles</i> , 2006 , 20, n/a-n/a	5.9	731
59	Multimodel ensemble simulations of present-day and near-future tropospheric ozone. <i>Journal of Geophysical Research</i> , 2006 , 111,		625
58	Evaluation of SF6, C2Cl4, and CO to approximate fossil fuel CO2 in the Northern Hemisphere using a chemistry transport model. <i>Journal of Geophysical Research</i> , 2006 , 111,		33
57	Future global tropospheric ozone changes and impact on European air quality. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	58
56	Are decadal anthropogenic emission reductions in Europe consistent with surface ozone observations?. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	54
55	Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. <i>Journal of Geophysical Research</i> , 2006 , 111,		220
54	The global atmospheric environment for the next generation. <i>Environmental Science & Environmental Sci</i>	10.3	298
53	Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 575-599	6.8	126
52	Interactive chemistry in the Laboratoire de MEOrologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2273-2319	6.8	180
51	Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2129-2146	6.8	259
50	Multi-model ensemble simulations of tropospheric NO₂ compared with GOME retrievals for the year 2000. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2943-2979	6.8	118
49	Change in global aerosol composition since preindustrial times. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5143-5162	6.8	147
48	Contribution of anthropogenic and natural sources to atmospheric methane variability. <i>Nature</i> , 2006 , 443, 439-43	50.4	762
47	On the role of atmospheric chemistry in the global CO2 budget. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	29
46	Changes in atmospheric sulfur burdens and concentrations and resulting radiative forcings under IPCC SRES emission scenarios for 1990\(\textbf{1}\) 100. Journal of Geophysical Research, 2005, 110, n/a-n/a		33
45	Future tropospheric ozone simulated with a climate-chemistry-biosphere model. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	82
44	Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	129
43	Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. <i>Journal of Geophysical Research</i> , 2005 , 110,		221

42	Aviation radiative forcing in 2000: An update on IPCC (1999). Meteorologische Zeitschrift, 2005, 14, 555	-5 6 .1	216
41	Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 2635-2656	6.8	122
40	An evaluation of the performance of chemistry transport models - Part 2: Detailed comparison with two selected campaigns. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 107-129	6.8	43
39	Naturally driven variability in the global secondary organic aerosol over a decade. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 1891-1904	6.8	53
38	Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2005 , 57, 283-304	3.3	81
37	Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations. <i>Journal of Geophysical Research</i> , 2004 , 109,		199
36	Interactive chemistry in the Laboratoire de MEBrologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. <i>Journal of Geophysical Research</i> , 2004 , 109, n/a-n/a		305
35	Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. <i>Journal of Geophysical Research</i> , 2004 , 109,		177
34	Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer. Journal of Geophysical Research, 2004 , 109, n/a-n/a		80
33	An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 1609-1631	6.8	51
32	Fresh air in the 21st century?. Geophysical Research Letters, 2003, 30,	4.9	152
31	Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. <i>Journal of Geophysical Research</i> , 2003 , 108, n/a-n/a		99
30	Intercomparison of tropospheric ozone models: Ozone transport in a complex tropopause folding event. <i>Journal of Geophysical Research</i> , 2003 , 108,		45
29	Variability in surface ozone background over the United States: Implications for air quality policy. Journal of Geophysical Research, 2003, 108, n/a-n/a		145
28	A pro-active stratospheric ozone protection scenario. <i>Global Environmental Change</i> , 2003 , 13, 43-49	10.1	10
27	A three-dimensional model of molecular hydrogen in the troposphere. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 4-1-ACH 4-16		61
26	Summertime tropospheric ozone over China simulated with a regional chemical transport model 1. Model description and evaluation. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 27-1		26
25	Summertime tropospheric ozone over China simulated with a regional chemical transport model 2. Source contributions and budget. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 2-1		21

24	On the Role of Lightning NOx in the Formation of Tropospheric Ozone Plumes: A Global Model Perspective. <i>Journal of Atmospheric Chemistry</i> , 2001 , 38, 277-294	3.2	44
23	Evolution of tropospheric ozone under anthropogenic activities and associated radiative forcing of climate. <i>Journal of Geophysical Research</i> , 2001 , 106, 32337-32360		77
22	Assimilation of carbon monoxide measured from satellite in a three-dimensional chemistry-transport model. <i>Journal of Geophysical Research</i> , 2001 , 106, 15385-15394		24
21	The global distribution of lightning NOx simulated on-line in a general circulation model. <i>Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science</i> , 2001 , 26, 585-591		15
20	Seasonal characteristics of tropospheric ozone production and mixing ratios over East Asia: A global three-dimensional chemical transport model analysis. <i>Journal of Geophysical Research</i> , 2000 , 105, 17895-17910		84
19	Data composites of airborne observations of tropospheric ozone and its precursors. <i>Journal of Geophysical Research</i> , 2000 , 105, 20497-20538		144
18	Comparison between global chemistry transport model results and Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data. <i>Journal of Geophysical Research</i> , 2000 , 105, 1503-1525		57
17	On the NO2 + soot reaction in the atmosphere. <i>Journal of Geophysical Research</i> , 1999 , 104, 1729-1736		64
16	A sensitivity simulation of tropospheric ozone changes due to the 1997 Indonesian fire emissions. <i>Geophysical Research Letters</i> , 1999 , 26, 3305-3308	4.9	39
15	Photochemistry and budget of ozone during the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2). <i>Journal of Geophysical Research</i> , 1999 , 104, 30275-30307		29
14	European scientific assessment of the atmospheric effects of aircraft emissions. <i>Atmospheric Environment</i> , 1998 , 32, 2329-2418	5.3	193
13	Past and future changes in global tropospheric ozone: Impact on radiative forcing. <i>Geophysical Research Letters</i> , 1998 , 25, 3807-3810	4.9	101
12	Measurements of NO x and PAN and estimates of O3 production over the seasons during Mauna Loa Observatory Photochemistry Experiment 2. <i>Journal of Geophysical Research</i> , 1998 , 103, 8323-8339		28
11	MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. <i>Journal of Geophysical Research</i> , 1998 , 103, 28265-28289		360
10	MOZART, a global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation. <i>Journal of Geophysical Research</i> , 1998 , 103, 28291-28335		231
9	Climatologies of NOxx and NOy: A comparison of data and models. <i>Atmospheric Environment</i> , 1997 , 31, 1851-1904	5.3	99
8	Radiative forcing due to increased tropospheric ozone concentrations. <i>Atmospheric Environment</i> , 1996 , 30, 1641-1646	5.3	33
7	Chemical compounds in the remote Pacific troposphere: Comparison between MLOPEX measurements and chemical transport model calculations. <i>Journal of Geophysical Research</i> , 1996 , 101, 14795-14813		40

6	Observed and model-calculated photostationary state at Mauna Loa Observatory during MLOPEX 2. <i>Journal of Geophysical Research</i> , 1996 , 101, 14681-14696		52
5	HNO3/NOx ratio in the remote troposphere During MLOPEX 2: Evidence for nitric acid reduction on carbonaceous aerosols?. <i>Geophysical Research Letters</i> , 1996 , 23, 2609-2612	4.9	99
4	The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system. <i>Journal of Geophysical Research</i> , 1994 , 99, 1173		152
3	Impact of present aircraft emissions of nitrogen oxides on tropospheric ozone and climate forcing. <i>Geophysical Research Letters</i> , 1994 , 21, 2031-2034	4.9	28
2	The faint young sun climatic paradox: A simulation with an interactive seasonal climate-sea ice model. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 1992 , 97, 133-150	2.9	14
1	A sensitivity study of the role of continental location and area on Paleozoic climate. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 1992 , 97, 311-323	2.9	