Chi-Kwong Li

List of Publications by Year in descending order

[^0]
1 Geometric means. Linear Algebra and Its Applications, 2004, 385, 305-334. 0.9 204Linear preserver problems: A brief introduction and some special techniques. Linear Algebra and ItsApplications, 1992, 162-164, 217-235.
2 Linear preserver problems: A brief introduction and some special techniques. Linear Algebra and Its
$7 \quad$ A note on convex stochastic dominance. Economics Letters, 1999, 62, 293-300.
1.8

69

12 Numerical Range of Matrix Polynomials. SIAM Journal on Matrix Analysis and Applications, 1994, 15, 1256-1265.
1.4

64
iviaps preserving proauct<mmimatn xmins:mmi= nttp:|/www.ws.org/ly9o/|viatn||viatnivil
altimg="sil.gif" overflow="scroll" $\rangle\langle m m l: m r o w\rangle\langle m m l: m i$
13 mathvariant="italic" $\rangle X Y$ </mml:mi>mml:mo-</mml:mo>mml:msupmml:mrow<mml:mi
0.959

14 Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations.
Proceedings of the American Mathematical Society, 2008, 136, 3013-3023.
0.8

58

$$
15 \text { Convexity of the Joint Numerical Range. SIAM Journal on Matrix Analysis and Applications, 2000, } 21 \text {, }
$$

1.4

53

A Note on Extreme Correlation Matrices. SIAM Journal on Matrix Analysis and Applications, 1994, 15, 903-908.

Extremal Characterizations of the Schur Complement and Resulting Inequalities. SIAM Review, 2000,
9.5

49
A simple proof of the elliptical range theorem. Proceedings of the American Mathematical Society,
$1996,124,1985-1986$.

Mappings preserving spectra of products of matrices. Proceedings of the American Mathematical Society, 2007, 135, 977-977.

Maps preserving the nilpotency of products of operators. Linear Algebra and Its Applications, 2007, 424, 222-239.

A note on eigenvalues of perturbed Hermitian matrices. Linear Algebra and Its Applications, 2005, 395, 183-190.

23 Chapter 9: miscellaneous preserver problems. Linear and Multilinear Algebra, 1992, 33, 109-119.
1.0

39

24 Mappings on matrices: invariance of functional values of matrix products. Journal of the Australian
Mathematical Society, 2006, 81, 165-184.
0.4

39

25 G-invariant norms and bicircular projections. Linear Algebra and Its Applications, 2007, 420, 596-608.
0.9

38

Condition for the higher rank numerical range to be non-empty. Linear and Multilinear Algebra, 2009, 57, 365-368.

The automorphism group of separable states in quantum information theory. Journal of Mathematical
Physics, 2011, 52, .

28 Matrices with some extremal properties. Linear Algebra and Its Applications, 1988, 101, 255-267.
0.9

35
Joint ranges of Hermitian matrices and simultaneous diagonalization. Linear Algebra and Its
Applications, 1991, 151, 157-167.
$0.9 \quad 35$

Eigenvalues, singular values, and Littlewood-Richardson coefficients. American Journal of
30 Mathematics, 2005, 127, 101-127.
1.1

35

The generalized spectral radius, numerical radius and spectral norm. Linear and Multilinear Algebra,
1984, 16, 215-237.

Maps preserving the spectrum of generalized Jordan product of operators. Linear Algebra and Its Applications, 2010, 432, 1049-1069.

Linear operators preserving the numerical radius of matrices. Proceedings of the American Mathematical Society, 1987, 99, 601-608.

Jordan isomorphisms and maps preserving spectra of certain operator products. Studia Mathematica, 2008, 184, 31-47.
Linear operators preserving unitarily invariant norms of matrices. Linear and Multilinear Algebra,
1990, 26, 119-132.
1.0

The Lidskii-Mirsky-Wielandt theorem - additive and multiplicative versions. Numerische Mathematik,
1999, 81, 377-413.

$$
\begin{aligned}
& \text { A generalized numerical range: the range of a constrained sesquilinear form. Linear and Multilinear } \\
& \text { Algebra, 1994, 37, 25-49. }
\end{aligned}
$$

Linear operators preserving directional majorization. Linear Algebra and Its Applications, 2001, 325, 141-146.

Its Applications, 2002, 341, 219-237.
0.9

26

44 Orthogonality of matrices. Linear Algebra and Its Applications, 2002, 347, 115-122.

Linear operators that preserve the<i>c</i>-numerical range or radius of matrices. Linear and
Multilinear Algebra, 1988, 23, 27-46.

46 G-invariant norms and G(c)-radii. Linear Algebra and Its Applications, 1991, 150, 179-194.
0.9

25

Remarks on numerical ranges of operators in spaces with an indefinite metric. Proceedings of the
American Mathematical Society, 1998, 126, 973-982.

Some aspects of the theory of norms. Linear Algebra and Its Applications, 1994, 212-213, 71-100.
0.9

24

Linear maps preserving permutation and stochastic matrices. Linear Algebra and Its Applications, 2002,
341, 5-22.

Determinantal and eigenvalue inequalities for matrices with numerical ranges in a sector. Journal of Mathematical Analysis and Applications, 2014, 410, 487-491.

Duality between some linear preserver problems. II. Isometries with respect to c-special norms and
matrices with fixed singular values. Linear Algebra and Its Applications, 1988, 110, 181-212.
0.9

23

Duality between some linear preservers problems: the invariance of thec-numerical range, thec-numerical radius and certain matrix sets. Linear and Multilinear Algebra, 1988, 23, 353-362.

Linear transformations between matrix spaces that map one rank specific set into another. Linear
Algebra and lts Applications, 2002, 357, 197-208.
0.9

23
57 TheC-convex matrices. Linear and Multilinear Algebra, 1987, 21, 303-312.

$58 \quad$| Norms that are invariant under unitary similarities and the<i>C</i>-numerical radii. Linear and |
| :--- |
| Multilinear Algebra, 1989, 24, 209-222. |

59 The determinant of the sum of two matrices. Bulletin of the Australian Mathematical Society, 1995,
$425-429$. Multiplicative preservers on semigroups of matrices. Linear Algebra and Its Applications, 2002, 355,
63 Linear Operators Preserving Certain Equivalence Relations on Matrices. SIAM Journal on Matrix
Analysis and Applications, 1991, 12, 195-204.Canadian Mathematical Bulletin, 2003, 46, 216-228.
Linear Maps on Selfadjoint Operators Preserving Invertibility, Positive Definiteness, Numerical Range.1.420
$0.9 \quad 20$66 On the $<\mathrm{i}>\mathrm{k}<\mid \mathrm{i}>$ th matrix numerical range. Linear and Multilinear Algebra, 1991, 28, 229-239.1.019
67 Numerical ranges and dilationsâ^-. Linear and Multilinear Algebra, 2000, 47, 35-48. 1.0 19Higher rank numerical ranges and low rank perturbations of quantum channels. Journal of
Properties and preservers of the pseudospectrum. Linear Algebra and Its Applications, 2012, 436, 316-325.1.01874 Overgroups of some classical linear groups with applications to linear preserver problems. Linear

```
Invertible preservers and algebraic groups III: preservers of unitary similarity (congruence) invariants
77 and overgroups of some unitary subgroups<sup>â^-</sup>. Linear and Multilinear Algebra, 1997, 43,
1.0 17
257-282.
```

Perfect codes on the towers of Hanoi graph. Bulletin of the Australian Mathematical Society, 1998, 57, 367-376.
81 The decomposable numerical radius and numerical radius of a compound matrix. Linear Algebra and lts
$0.9 \quad 16$
Applications, 1986, 76, 45-58.
83 Duality between some linear preserver problems. III. c-spectral norms and (skew)-symmetric matriceswith fixed singular values. Linear Algebra and Its Applications, 1991, 143, 67-97.
$0.9 \quad 16$
Efficient quantum error correction for fully correlated noise. Physics Letters, Section A: General,
84 Efficient quantum error correction for fully correlated no
2.1

16
16
$0.5 \quad 16$ 1994, 37, 374-383.
0.5

16

On the unitarily invariant norms and some related results. Linear and Multilinear Algebra, 1987, 20,
87 Certain isometries on Rn. Linear Algebra and Its Applications, 1992, 165, 251-265. 5
91 A simple proof of the Craigâ $€^{\prime \prime}$ Sakamoto theorem. Linear Algebra and Its Applications, 2000, 321, $281-283$.
92 Induced operators on symmetry classes of tensors. Transactions of the American Mathematical
Society, 2001, 354, 807-836.
93 Graphs equienergetic with edge-deleted subgraphs. Linear and Multilinear Algebra, 2009, 57, 683-693. 1.0
Evaluating the robustness of <mml:math
xmlns:mm|="http://www.w3.org/1998/Math/MathML">mml:mik</mml:mi></mml:math>-coherence and
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">mml:mik</mml:mi></mml:math>
-entanglement. Physical Review A, 2018, 98,
95
A SURVEY ON LINEAR PRESERVERS OF NUMERICAL RANGES AND RADII. Taiwanese Journal of Mathematics,
$2001,5,$.

96 Inequalities relating unitarily invariant norms and the numerical radius. Linear and Multilinear
Algebra, 1988, 23, 183-191.
13

97	Linear operators preserving unitary similarity invariant norms. Linear and Multilinear Algebra, 1990, 27, 213-224.	1.0
98	On dispersal and population growth for multistate matrix models. Linear Algebra and Its Applications, $2006,418,900-912$.	0.9
99	Physical transformations between quantum states. Journal of Mathematical Physics, 2012, 53, .	

101 Isometries of symmetric gauge functions. Linear and Multilinear Algebra, 1991, 30, 81-92. 1.0 12
102 Linear operators preserving certain equivalence relations originating in system theory. Linear Algebra 0.9 12 and Its Applications, 1992, 161, 165-225.
104 Numerical Radius Isometries. Linear and Multilinear Algebra, 2002, 50, 307-314.1.012

$1.0 \quad 12$
103 Matrix inequalities involving a positive linear map. Linear and Multilinear Algebra, 1996, 41, 221-231. 12
105 The ultimate estimate of the upper norm bound for the summation of operators. Journal of 1.4 12 Functional Analysis, 2006, 232, 455-476.
Linear preservers of tensor product of unitary orbits, and product numerical range. Linear Algebra
106 and Its Applications, 2013, 438, 3797-3803.
1.0 11
107 Linear operators preserving the decomposable numerical radius. Linear and Multilinear Algebra, 1988, 23, 333-341.
109 Equality of higher numerical ranges of matrices and a conjecture of Kippenhahn on Hermitian pencils.
113 On numerical ranges and roots. Journal of Mathematical Analysis and Applications, 2003, 282, 329-340.
H-Unitary and Lorentz Matrices: A Review. SIAM Journal on Matrix Analysis and Applications, 2004, 25, 1140-1162.
1.4
119 A Dilation0.611
120 Distance to the convex hull of the unitary orbit with respect to unitary similarity invariant norms.

```
    Linear operators preserving the (p,q)-numerical range. Linear Algebra and Its Applications, 1988, 110,
    75-89.
```

128 Numerical Ranges Arising from Simple Lie Algebras. Canadian Journal of Mathematics, 2000, 52, 141-171.
0.6

Numerical ranges of the powers of an operator. Journal of Mathematical Analysis and Applications, 2010, 365, 458-466.

A note on the realignment criterion. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 315304.

A geometric characterization of invertible quantum measurement maps. Journal of Functional Analysis, 2013, 264, 464-478.

Linear Maps Preserving Ky Fan Norms and Schatten Norms of Tensor Products of Matrices. SIAM Journal on Matrix Analysis and Applications, 2013, 34, 673-685.

Linear maps preserving the higher numerical ranges of tensor products of matrices. Linear and Multilinear Algebra, 2014, 62, 776-791.

On the higher numerical radius and spectral norm. Linear Algebra and Its Applications, 1986, 80, 55-70.
0.9

The numerical range of derivations. Linear Algebra and Its Applications, 1989, 119, 97-119.

A brief survey on the decomposable numerical range of matrices. Linear and Multilinear Algebra, 1992,
32, 179-190.

Inequalities on Singular Values of Block Triangular Matrices. SIAM Journal on Matrix Analysis and
Applications, 2002, 24, 126-131.

Some Convexity Features Associated with Unitary Orbits. Canadian Journal of Mathematics, 2003, 55, 91-111.

139 Linear Maps Transforming the Unitary Group. Canadian Mathematical Bulletin, 2003, 46, 54-58.
0.5

8

Inverse closed ray-nonsingular cones of matrices. Linear Algebra and Its Applications, 2005, 400, 203-230.

Eigenvalues of the Sum of Matrices from Unitary Similarity Orbits. SIAM Journal on Matrix Analysis and Applications, 2008, 30, 560-581.

SPECTRUM, NUMERICAL RANGE AND DAVIS-WIELANDT SHELL OF A NORMAL OPERATOR. Glasgow Mathematical Journal, 2009, 51, 91-100.

Additive decomposition of nonnegative matrices with applications to permanents and scalingt. Linear and Multilinear Algebra, 1988, 23, 63-78.
1.0

```
145 The numerical range and decomposable numerical range of matrices. Linear and Multilinear Algebra,
145 1991, 29, 195-205.
```

$1.0 \quad 7$

Inequalities relating norms invariant under unitary similarities. Linear and Multilinear Algebra, 1991, 29, 155-167.
$\begin{array}{ll}1.0 & 7\end{array}$
Construction of Matrices with Prescribed Singular Values and Eigenvalues. BIT Numerical
Mathematics, 2001, 41, 115-126.

150 Isometries for Ky-Fan norms on block triangular matrix algebras. Archiv Der Mathematik, 2003, 81, 175-181.
151 Generalized doubly stochastic matrices and linear preservers. Linear and Multilinear Algebra, 2005, 53, 1-11.Sum of Hermitian Matrices with Civen Eigenvalues: Inertia, Rank, and Multiple Eigenvalues. Canadian
$0.6 \quad 7$
152 Journal of Mathematics, 2010, 62, 109-132.$\begin{array}{ll}0.6 & 7\end{array}$
153 Evolution of unconditional dispersal in periodic environments. Journal of Biological Dynamics, 2011, 5, 120-134. 1.7 7
Linear maps preserving numerical radius of tensor products of matrices. Journal of Mathematical Analysis and Applications, 2013, 407, 183-189.

$1.0 \quad 7$
155 Inequalities on the singular values of an off-diagonal block of a Hermitian matrix. Journal of Inequalities and Applications, 1999, 1999, 192382.
1.1 7
Multiplicative maps on invertible matrices that preserve matricial properties. Electronic Journal of 0.6 7 Linear Algebra, 0, 10, .
0.3 7
157
Recovery in quantum error correction for general noise without measurement. QuantumInformation and Computation, 2012, 12, 149-158.A generalization of spectral radius, numerical radius, and spectral norm. Linear Algebra and Its

163 A Lower Bound on the C-Numerical Radius of Nilpotent Matrices Appearing in Coherent Spectroscopy.
SIAM Journal on Matrix Analysis and Applications, 2005, 27, 793-800.

Preservers of spectral radius, numerical radius, or spectral norm of the sum on nonnegative matrices. Linear Algebra and Its Applications, 2009, 430, 1739-1761.
0.9 .

166 Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues. Linear Algebra and Its Applications, 2012, 436, 3773-3776.

Numerical Range of Lie Product of Operators. Integral Equations and Operator Theory, 2015, 83, 497-516.
171 Unitary similarity invariant function preservers of skew products of operators. Journal of

181 Linear maps leaving the alternating group invariant. Linear Algebra and Its Applications, 2002, 340, 69-80. .9 5Multiplicative Preservers of C-Numerical Ranges and Radii. Linear and Multilinear Algebra, 2004, 52,
$1.0 \quad 5$
182 265-279.$1.0 \quad 5$
183 Distances from a Hermitian Pair to Diagonalizable and Nondiagonalizable Hermitian Pairs. SIAM
Journal on Matrix Analysis and Applications, 2006, 28, 301-305.
1.4 5
Extension of the total least square problem using general unitarily invariant norms. Linear and 1.0 5
184 Multilinear Algebra, 2007, 55, 71-79.$0.9 \quad 5$
185 Schur product of matrices and numerical radius (range) preserving maps. Linear Algebra and Its Applications, 2007, 424, 8-24.
SCHUR MULTIPLICATIVE MAPS ON MATRICES. Bulletin of the Australian Mathematical Society, 2008, 77, 0.5
49-72.
1.0
$187 \quad$ Elementary proofs for some results on the 5
188 Conditions for Linear Dependence of Two Operators. , 2010, , 411-434. 5
189 SOME RESULTS ON THE c-NUMERICAL RANGE. , 1995, , 247-258. 5
Maps preserving spectral radius, numerical radius, spectral norm. Electronic Journal of Linear190 Maps preserving191 NORMS ON CARTESIAN PRODUCT OF LINEAR SPACES. Tamkang Journal of Mathematics, 1990, 21, 35-39.0.35
192 G-Invariant Hermitian Forms and G-Invariant Elliptical Norms. SIAM Journal on Matrix Analysis andApplications, 1989, 10, 435-445.
$1.4 \quad 4$
193 On certain convex matrix sets. Discrete Mathematics, 1990, 79, 323-326. 0.7 4
194 A special linear operator on. Linear and Multilinear Algebra, 1991, 30, 65-75. 1.0 4
195 Chapter 6: linear preservers on numerical ranges, numerical radii and unitary similarity invariant 1.0 4 norms. Linear and Multilinear Algebra, 1992, 33, 63-73.196 Linear operators preserving certain singular matrix sets. Linear and Multilinear Algebra, 1993, 36, 19-25.$1.0 \quad 4$
197 Minimum positive determinant of integer
Multilinear Algebra, 1995, 40, 163-170.1.04

```
199 Generalized eigenvalues of a definite hermitian matrix pair. Linear Algebra and Its Applications, 1998,
271, 309-321.
```

203 Norm bounds for summation of two normal matrices. Linear Algebra and Its Applications, 2004, 379, 0.9 4
204 Central groupoids, central digraphs, and zero-one matrices A satisfying $A 2=$ J. Journal of Combinatorial Theory - Series A, 2004, 105, 35-50.$0.8 \quad 4$
205 Permutations as Product of Parallel Transpositions. SIAM Journal on Discrete Mathematics, 2011, 25, 1412-1417.
206 Maps preserving the joint numerical radius distance of operators. Linear Algebra and Its Applications,
207 Projection methods for quantum channel construction. Quantum Information Processing, 2015, 14, 3075-3096.
209 Higher rank matricial ranges and hybrid quantum error correction. Linear and Multilinear Algebra,
209 2021, 69, 827-839.
4
210 Isometries of direct sums of sequence spaces. Asian Journal of Mathematics, 1998, 2, 157-180.0.34
211 Linear operators preserving t-congruence on matrices. Linear Algebra and Its Applications, 1992, 175,
191-211.0.93Linear maps relating different unitary similarity orbits or different generalized numerical ranges.
213 308, 139-152.
Optimizing quadratic forms of adjacency matrices of trees and related eigenvalue problems. Linear
217 Linear maps leaving invariant subsets of nonnegative symmetric matrices. Bulletin of the Australian

Spectral radius preservers of products of monnegative matrices. Banach Journal of Mathematical

Multiplicative maps preserving the higher rank numerical ranges and radii. Linear Algebra and Its Applications, 2010, 432, 2729-2738.

Linear preservers of higher rank numerical ranges and radii. Linear and Multilinear Algebra, 2009, 57,
503-521.
$219 \quad$ 503-521.

222 Spectra, norms and numerical ranges of generalized quadratic operators. Linear and Multilinear
$1.0 \quad 3$
223 Generalized interlacing inequalities. Linear and Multilinear Algebra, 2012, 60, 1245-1254.

224 Entanglement transformation between sets of bipartite pure quantum states using local operations. Journal of Mathematical Physics, 2012, 53, 122201.

Submultiplicativity of the numerical radius of commuting matrices of order two. Journal of Mathematical Analysis and Applications, 2019, 475, 730-735.

Joint numerical ranges and commutativity of matrices. Journal of Mathematical Analysis and Applications, 2020, 491, 124310.

227 Error correction schemes for fully correlated quantum channels protecting both quantum and classical information. Quantum Information Processing, 2020, 19, 1.

Off-diagonal submatrices of a Hermitian matrix. Proceedings of the American Mathematical Society, 2004, 132, 2849-2856.

A note on Miranda's results about the characteristic values and the three types of singular values of a complex matrix. Linear and Multilinear Algebra, 1984, 16, 297-303.

230 An inequality on elementary symmetric functions. Linear and Multilinear Algebra, 1987, 20, 373-375.
1.0

Some extremal problems for positive definite matrices and operators. Linear Algebra and Its Applications, 1990, 140, 139-154.

Some Inequalities on the Decomposable Numerical Radii of Matrices. SIAM Journal on Matrix Analysis and Applications, 1991, 12, 790-801.

> Linear operators preserving unitaryt-congruence (orthogonal similarity) on complex (real) matrices. Linear and Multilinear Algebra, 1993, 35, 83-105.

Linear operators preserving the (p, q) numerical radius. Linear Algebra and Its Applications, 1994, 201, 21-42.

$$
\begin{aligned}
& 235 \text { Spectral bounds derived from quadratic forms on decomposable tensors. Linear Algebra and Its } \\
& \text { Applications, 1994, 201, 181-198. }
\end{aligned}
$$

Linear Operators Preserving Complex Orthogonal Equivalence on Matrices. SIAM Journal on Matrix
239 Some interlacing theorems on the schur complement. Linear and Multilinear Algebra, 1998, 44, 373-382.
243 Linear maps transforming the higher numerical ranges. Linear Algebra and Its Applications, 2005, 400,291-311.
$247 \quad$ Society, 2019, 147, 4805-4811.
$0.8 \quad 2$
Minimum number of non-zero-entries in a $7 \hat{€^{-}} €^{-}-\hat{A^{-}} €^{-7}$ stable matrix. Linear Algebra and Its Applications, 2019, 572, 135-152.
0.9 2
249 Coherence measures induced by norm functions. Journal of Mathematical Physics, 2021, 62, 1.1 2
250 Linear operators preserving correlation matrices. Proceedings of the American Mathematical Society, 2002, 131, 55-63.
$251 \quad$ Minkows

$$
\begin{aligned}
& 253 \text { Polynomials and numerical ranges. Proceedings of the American Mathematical Society, 1988, 104, } \\
& 369-373 .
\end{aligned}
$$

1.0

Some results on the generalized k-numerical range. Linear Algebra and Its Applications, 1991, 146, 21-29.

$0.9 \quad 1$
255 Some results on the generalized k-numerical range. Linear Algebra and Its Applications, 1991, 146, 21-29. 1
Some geometrical properties of the decomposable numerical range. Linear and Multilinear Algebra,
257 Linear operators preserving the inner and outer < i>c</i>-spectral radii. Linear and Multilinear Algebra, 1.0 1994, 36, 195-204.
259 A research problem:. Linear and Multilinear Algebra, 1996, 41, 41-47.
260 On the Hu-Hurley-Tam conjecture concerning the generalized numerical range. Linear Algebra and ItsApplications, 2000, 305, 87-97.
261 Nonconvexity of the Generalized Numerical Range Associated with the Principal Character. Canadian Mathematical Bulletin, 2000, 43, 448-458.
262 Spectral inequalities and equalities involving products of matrices. Linear Algebra and ItsApplications, 2001, 323, 131-143.
0.9 1
263 Diagonals and Partial Diagonals of Sum of Matrices. Canadian Journal of Mathematics, 2002, 54, 571-594.
0.6 1
264 Operator properties of T and $\mathrm{K}(\mathrm{T})$. Linear Algebra and Its Applications, 2005, 401, 173-191.0.91
265 Automorphisms of certain groups and semigroups of matrices. Linear Algebra and Its Applications, 2006, 412, 490-525. 0.9 1
266 A note on the unitary part of a contraction. Linear Algebra and Its Applications, 2010, 433, 1533-1535.
267 Conditions for degradability of tripartite quantum states. Journal of Physics A: Mathematical and
Theoretical, 2014, 47, 115306.2.11
2.2
Maximal noiseless code rates for collective rotation channels on qudits. Quantum Information Processing, 2015, 14, 4039-4055.
Factoring a Quadratic Operator as a Product of Two Positive Contractions. Canadian Mathematical Bulletin, 2016, 59, 354-362. 269$0.5 \quad 1$Bounds on probability of state transfer with respect to readout time and edge weight. Physical ReviewA, 2016, 93, .

The generalized numerical range of a set of matrices. Linear Algebra and Its Applications, 2019, 563,

```
275 Construction of quantum states with special properties by projection methods. Quantum Information
2.2 1
Processing, 2020, 19, 1.
```

Additive Hermitian idempotent preservers between operator algebras. Journal of Mathematical
Analysis and Applications, 2022, 505, 125522.
$1.0 \quad 1$

277 Norms, Isometries, and Isometry Groups. American Mathematical Monthly, 2000, 107, 334.
278 MATRIX TECHNIQUES IN QUANTUM INFORMATION SCIENCE. , 2012, , 1
279 Chapter 7: linear preservers of relations on Matrix Spaces. Linear and Multilinear Algebra, 1992, 33, 75-84.
Chapter 5: linear preservers on functions of Singular values. Linear and Multilinear Algebra, 1992, 33,53-61.
281 Matrix inequalities and partial isometries that arise in x-ray crystallography. Linear Algebra and Its
Applications, 1997, 254, 303-314.
0.9 0Isometries for the induced c-norm on square matrices and some related results. Linear Algebra and Its
285 Uniqueness of the solutions of some completion problems. Linear Algebra and Its Applications, 2004,0.90
287 Preface and conference report. Linear and Multilinear Algebra, 2008, 56, 1-2.

$$
\begin{aligned}
& 289 \text { Maximizing the numerical radii of matrices by permuting their entries. Linear and Multilinear Algebra, } \\
& 2014,62,579-594 \text {. }
\end{aligned}
$$

Spectral radius, numerical radius, and the product of operators. Journal of Mathematical Analysis

294 Preservation of the joint essential matricial range. Bulletin of the London Mathematical Society, 2019,
 51, 868-876.

Joint matricial range and jo
Theory, 2020, 5, 609-626.

```
297 Preface of the special issue on Numerical ranges and numerical radii. Linear and Multilinear Algebra,2021, 69, 771-771.
```

298 Numerical Range. Discrete Mathematics and Its Applications, 2013, , 419-430.
299 Operator Quantum Error Correction. Discrete Mathematics and Its Applications, 2013, , 1353-1363.
301 Preservers of isometries. Acta Scientiarum Mathematicarum, 2018, 84, 3-17.
302 Numerical range, dilation, and maximal operator systems. Acta Scientiarum Mathematicarum, 2020, 86,

[^0]: Source: https:/|exaly.com/author-pdf/4705913/publications.pdf
 Version: 2024-02-01

