Pamela J Welz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4705817/publications.pdf Version: 2024-02-01

Δλμειλ Ι \λ/ειζ

#	Article	IF	CITATIONS
1	Microbial community structure stability, a key parameter in monitoring the development of constructed wetland mesocosms during start-up. Research in Microbiology, 2012, 163, 28-35.	2.1	41
2	Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: implications for biological wastewater treatment and land application. Water Science and Technology, 2016, 74, 2036-2050.	2.5	37
3	Fruit waste streams in South Africa and their potential role in developing a bio-economy. South African Journal of Science, 2015, 111, 1-11.	0.7	30
4	Phenolic removal processes in biological sand filters, sand columns and microcosms. Bioresource Technology, 2012, 119, 262-269.	9.6	27
5	Treatment of high ethanol concentration wastewater by biological sand filters: Enhanced COD removal and bacterial community dynamics. Journal of Environmental Management, 2012, 109, 54-60.	7.8	24
6	Assessment of temporal and spatial evolution of bacterial communities in a biological sand filter mesocosm treating winery wastewater. Journal of Applied Microbiology, 2013, 115, 91-101.	3.1	24
7	Ethanol degradation and the benefits of incremental priming in pilot-scale constructed wetlands. Ecological Engineering, 2011, 37, 1453-1459.	3.6	21
8	Biological sand filter system treating winery effluent for effective reduction in organic load and pH neutralisation. Journal of Water Process Engineering, 2018, 25, 118-127.	5.6	21
9	The effect of biogenic and chemically manufactured silver nanoparticles on the benthic bacterial communities in river sediments. Science of the Total Environment, 2018, 644, 1380-1390.	8.0	20
10	Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio. Journal of Environmental Management, 2018, 207, 192-202.	7.8	19
11	Anaerobic Co-Digestion of Tannery and Slaughterhouse Wastewater for Solids Reduction and Resource Recovery: Effect of Sulfate Concentration and Inoculum to Substrate Ratio. Energies, 2021, 14, 2491.	3.1	18
12	Valorisation of Edible Oil Wastewater Sludge: Bioethanol and Biodiesel Production. Waste and Biomass Valorization, 2020, 11, 2431-2440.	3.4	17
13	Biodegradation of organics and accumulation of metabolites in experimental biological sand filters used for the treatment of synthetic winery wastewater: A mesocosm study. Journal of Water Process Engineering, 2014, 3, 155-163.	5.6	15
14	The influence of grain physicochemistry and biomass on hydraulic conductivity in sand-filled treatment wetlands. Ecological Engineering, 2018, 116, 21-30.	3.6	14
15	Treatment wetlands and phyto-technologies for remediation of winery effluent: Challenges and opportunities. Science of the Total Environment, 2022, 807, 150544.	8.0	14
16	Analysis of substrate degradation, metabolite formation and microbial community responses in sand bioreactors treating winery wastewater: A comparative study. Journal of Environmental Management, 2014, 145, 147-156.	7.8	12
17	Wastewater from the Edible Oil Industry as a Potential Source of Lipase- and Surfactant-Producing Actinobacteria. Microorganisms, 2021, 9, 1987.	3.6	11
18	Sulfate-reducing and methanogenic microbial community responses during anaerobic digestion of tannery effluent. Bioresource Technology, 2022, 347, 126308.	9.6	11

Pamela J Welz

#	Article	IF	CITATIONS
19	Selection of <i>Clostridium</i> spp. in biological sand filters neutralizing synthetic acid mine drainage. FEMS Microbiology Ecology, 2014, 87, 678-690.	2.7	8
20	Minor differences in sand physicochemistry lead to major differences in bacterial community structure and function after exposure to synthetic acid mine drainage. Biotechnology and Bioprocess Engineering, 2014, 19, 211-220.	2.6	8
21	Selection of Diazotrophic Bacterial Communities in Biological Sand Filter Mesocosms Used for the Treatment of Phenolic-Laden Wastewater. Microbial Ecology, 2013, 66, 563-570.	2.8	7
22	Filament identification and dominance of Eikelboom Type 0092 in activated sludge from wastewater treatment facilities in Cape Town, South Africa. Water S A, 2014, 40, 649.	0.4	5
23	Biological Desulfurization of Tannery Effluent Using Hybrid Linear Flow Channel Reactors. Water (Switzerland), 2022, 14, 32.	2.7	4
24	Organic removal rates and biogas production of an upflow anaerobic sludge blanket reactor treating sugarcane molasses. South African Journal of Chemical Engineering, 2019, 28, 1-7.	2.4	3
25	Heterogeneous Nanomagnetic Catalyst from Cupriferous Mineral Processing Gangue for the Production of Biodiesel. Catalysts, 2019, 9, 1047.	3.5	2
26	Qualitative Assessment of Biodiesel Produced from Primary Edible Oil Wastewater Sludge. Waste and Biomass Valorization, 2020, 11, 3873-3881.	3.4	2