J Patrick Loria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4705569/publications.pdf

Version: 2024-02-01

72 papers 5,275 citations

126708 33 h-index 70 g-index

75 all docs 75 docs citations

75 times ranked 4268 citing authors

#	Article	IF	CITATIONS
1	MptpA Kinetics Enhanced by Allosteric Control of an Active Conformation. Journal of Molecular Biology, 2022, 434, 167540.	2.0	7
2	A simple method to determine changes in the affinity between HisF and HisH in the Imidazole Glycerol Phosphate Synthase heterodimer. PLoS ONE, 2022, 17, e0267536.	1.1	O
3	Phosphorylation of a Human Microprotein Promotes Dissociation of Biomolecular Condensates. Journal of the American Chemical Society, 2021, 143, 12675-12687.	6.6	20
4	Significant Loop Motions in the SsoPTP Protein Tyrosine Phosphatase Allow for Dual General Acid Functionality. Biochemistry, 2021, 60, 2888-2901.	1.2	5
5	Role of a high centrality residue in protein dynamics and thermal stability. Journal of Structural Biology, 2021, 213, 107773.	1.3	3
6	A deubiquitylase with an unusually high-affinity ubiquitin-binding domain from the scrub typhus pathogen Orientia tsutsugamushi. Nature Communications, 2020, 11, 2343.	5.8	22
7	Allosteric Impact of the Variable Insert Loop in <i>Vaccinia</i> H1-Related (VHR) Phosphatase. Biochemistry, 2020, 59, 1896-1908.	1.2	5
8	Allosteric Control of Enzyme Activity: From Ancient Origins to Recent Gene-Editing Technologies. Biochemistry, 2020, 59, 1711-1712.	1.2	3
9	Reaching the sparse-sampling limit for reconstructing a single peak in a 2D NMR spectrum using iterated maps. Journal of Biomolecular NMR, 2019, 73, 545-560.	1.6	3
10	Uncovering the Molecular Interactions in the Catalytic Loop That Modulate the Conformational Dynamics in Protein Tyrosine Phosphatase 1B. Journal of the American Chemical Society, 2019, 141, 12634-12647.	6.6	40
11	Accelerating 2D NMR relaxation dispersion experiments using iterated maps. Journal of Biomolecular NMR, 2019, 73, 561-576.	1.6	5
12	Nanosecond Dynamics Regulate the MIFâ€Induced Activity of CD74. Angewandte Chemie - International Edition, 2018, 57, 7116-7119.	7. 2	32
13	Eigenvector centrality for characterization of protein allosteric pathways. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12201-E12208.	3.3	145
14	I260Q DNA polymerase \hat{I}^2 highlights precatalytic conformational rearrangements critical for fidelity. Nucleic Acids Research, 2018, 46, 10740-10756.	6.5	8
15	A YopH PTP1B Chimera Shows the Importance of the WPD-Loop Sequence to the Activity, Structure, and Dynamics of Protein Tyrosine Phosphatases. Biochemistry, 2018, 57, 5315-5326.	1.2	20
16	Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation. Frontiers in Molecular Biosciences, 2018, 5, 4.	1.6	25
17	Nanosecond Dynamics Regulate the MIFâ€Induced Activity of CD74. Angewandte Chemie, 2018, 130, 7234-7237.	1.6	2
18	Altering the allosteric pathway in IGPS suppresses millisecond motions and catalytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3414-E3423.	3.3	55

#	Article	IF	CITATIONS
19	Exploring protein structure and dynamics through a projectâ€oriented biochemistry laboratory module. Biochemistry and Molecular Biology Education, 2017, 45, 403-410.	0.5	10
20	Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid. Biochemistry, 2017, 56, 96-106.	1.2	18
21	Allostery in enzyme catalysis. Current Opinion in Structural Biology, 2017, 47, 123-130.	2.6	60
22	Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases. Journal of Molecular Biology, 2017, 429, 2360-2372.	2.0	47
23	Allosteric Communication Disrupted by a Small Molecule Binding to the Imidazole Glycerol Phosphate Synthase Protein–Protein Interface. Biochemistry, 2016, 55, 6484-6494.	1.2	33
24	Dissecting Dynamic Allosteric Pathways Using Chemically Related Small-Molecule Activators. Structure, 2016, 24, 1155-1166.	1.6	38
25	Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase \hat{l}^2 . Biochemistry, 2016, 55, 382-395.	1.2	16
26	Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function. Progress in Nuclear Magnetic Resonance Spectroscopy, 2016, 92-93, 1-17.	3.9	42
27	Solution NMR Spectroscopy for the Study of Enzyme Allostery. Chemical Reviews, 2016, 116, 6323-6369.	23.0	106
28	Movement and Specificity in a Modular DNA Binding Protein. Structure, 2015, 23, 973-974.	1.6	1
28	Movement and Specificity in a Modular DNA Binding Protein. Structure, 2015, 23, 973-974. Complexity of Protein Energy Landscapes Studied by Solution NMR Relaxation Dispersion Experiments. Journal of Physical Chemistry B, 2015, 119, 3743-3754.	1.6	9
	Complexity of Protein Energy Landscapes Studied by Solution NMR Relaxation Dispersion Experiments.		
29	Complexity of Protein Energy Landscapes Studied by Solution NMR Relaxation Dispersion Experiments. Journal of Physical Chemistry B, 2015, 119, 3743-3754. 1H, 15N, and 13C backbone resonance assignments for the yersinia protein tyrosine phosphatase YopH.	1.2	9
30	Complexity of Protein Energy Landscapes Studied by Solution NMR Relaxation Dispersion Experiments. Journal of Physical Chemistry B, 2015, 119, 3743-3754. 1H, 15N, and 13C backbone resonance assignments for the yersinia protein tyrosine phosphatase YopH. Biomolecular NMR Assignments, 2014, 8, 387-389. MoD-QM/MM Structural Refinement Method: Characterization of Hydrogen Bonding in the	0.4	9
29 30 31	Complexity of Protein Energy Landscapes Studied by Solution NMR Relaxation Dispersion Experiments. Journal of Physical Chemistry B, 2015, 119, 3743-3754. 1H, 15N, and 13C backbone resonance assignments for the yersinia protein tyrosine phosphatase YopH. Biomolecular NMR Assignments, 2014, 8, 387-389. MoD-QM/MM Structural Refinement Method: Characterization of Hydrogen Bonding in the <i>Oxytricha nova</i> G-Quadruplex. Journal of Chemical Theory and Computation, 2014, 10, 5125-5135. Enzyme Architecture: The Effect of Replacement and Deletion Mutations of Loop 6 on Catalysis by	1.2 0.4 2.3	9 4 16
29 30 31 32	Complexity of Protein Energy Landscapes Studied by Solution NMR Relaxation Dispersion Experiments. Journal of Physical Chemistry B, 2015, 119, 3743-3754. 1H, 15N, and 13C backbone resonance assignments for the yersinia protein tyrosine phosphatase YopH. Biomolecular NMR Assignments, 2014, 8, 387-389. MoD-QM/MM Structural Refinement Method: Characterization of Hydrogen Bonding in the <i>Oxytricha nova < /i> G-Quadruplex. Journal of Chemical Theory and Computation, 2014, 10, 5125-5135. Enzyme Architecture: The Effect of Replacement and Deletion Mutations of Loop 6 on Catalysis by Triosephosphate Isomerase. Biochemistry, 2014, 53, 3486-3501. Conformational Motions Regulate Phosphoryl Transfer in Related Protein Tyrosine Phosphatases.</i>	1.2 0.4 2.3	9 4 16 23
29 30 31 32 33	Complexity of Protein Energy Landscapes Studied by Solution NMR Relaxation Dispersion Experiments. Journal of Physical Chemistry B, 2015, 119, 3743-3754. 1H, 15N, and 13C backbone resonance assignments for the yersinia protein tyrosine phosphatase YopH. Biomolecular NMR Assignments, 2014, 8, 387-389. MoD-QM/MM Structural Refinement Method: Characterization of Hydrogen Bonding in the ⟨i⟩Oxytricha nova⟨i⟩ G-Quadruplex. Journal of Chemical Theory and Computation, 2014, 10, 5125-5135. Enzyme Architecture: The Effect of Replacement and Deletion Mutations of Loop 6 on Catalysis by Triosephosphate Isomerase. Biochemistry, 2014, 53, 3486-3501. Conformational Motions Regulate Phosphoryl Transfer in Related Protein Tyrosine Phosphatases. Science, 2013, 341, 899-903. What's in Your Buffer? Solute Altered Millisecond Motions Detected by Solution NMR. Biochemistry,	1.2 0.4 2.3 1.2	9 4 16 23

#	Article	IF	CITATIONS
37	NMR insights into protein allostery. Archives of Biochemistry and Biophysics, 2012, 519, 223-231.	1.4	73
38	Substrate-Dependent Millisecond Domain Motions in DNA Polymerase \hat{l}^2 . Journal of Molecular Biology, 2012, 419, 171-182.	2.0	22
39	Allosteric pathways in imidazole glycerol phosphate synthase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1428-36.	3.3	192
40	Alteration of Hydrogen Bonding in the Vicinity of Histidine 48 Disrupts Millisecond Motions in RNase A. Biochemistry, 2011, 50, 1723-1730.	1.2	31
41	Reengineering Rate-Limiting, Millisecond Enzyme Motions by Introduction of an Unnatural Amino Acid. Biophysical Journal, 2011, 101, 411-420.	0.2	28
42	Nanometer Propagation of Millisecond Motions in V-Type Allostery. Structure, 2010, 18, 1596-1607.	1.6	67
43	The crystal structure of ribonuclease A in complex with thymidineâ€3â€2â€monophosphate provides further insight into ligand binding. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2459-2468.	1.5	16
44	Millisecond dynamics in the allosteric enzyme imidazole glycerol phosphate synthase (IGPS) from Thermotoga maritima. Journal of Biomolecular NMR, 2009, 45, 73-84.	1.6	30
45	Helix Stabilization Precedes Aqueous and Bilayer-Catalyzed Fiber Formation in Islet Amyloid Polypeptide. Journal of Molecular Biology, 2009, 393, 383-396.	2.0	170
46	The Flexibility of a Distant Loop Modulates Active Site Motion and Product Release in Ribonuclease A. Biochemistry, 2009, 48, 7160-7168.	1.2	91
47	Monitoring Molecular Interactions by NMR. Methods in Molecular Biology, 2009, 490, 115-134.	0.4	8
48	1H, 15N and 13C resonance assignment of imidazole glycerol phosphate (IGP) synthase protein HisF from ThermotogaÂmaritima. Biomolecular NMR Assignments, 2008, 2, 219-221.	0.4	12
49	Characterization of Enzyme Motions by Solution NMR Relaxation Dispersion. Accounts of Chemical Research, 2008, 41, 214-221.	7.6	155
50	The mechanism of rate-limiting motions in enzyme function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11981-11986.	3.3	146
51	Dynamic Requirements for a Functional Protein Hinge. Journal of Molecular Biology, 2007, 368, 131-149.	2.0	77
52	Value of a Hydrogen Bond in Triosephosphate Isomerase Loop Motion. Biochemistry, 2007, 46, 6001-6010.	1,2	35
53	The effects of cosolutes on protein dynamics: The reversal of denaturant-induced protein fluctuations by trimethylamineN-oxide. Protein Science, 2007, 16, 20-29.	3.1	38
54	Enzyme Dynamics along the Reaction Coordinate:  Critical Role of a Conserved Residue. Biochemistry, 2006, 45, 2636-2647.	1.2	72

#	Article	IF	CITATIONS
55	Faithful estimation of dynamics parameters from CPMC relaxation dispersion measurements. Journal of Magnetic Resonance, 2006, 180, 93-104.	1.2	78
56	Characterization of the Transition State of Functional Enzyme Dynamics. Journal of the American Chemical Society, 2006, 128, 7724-7725.	6.6	37
57	Crystallization and characterization of the thallium form of the Oxytricha nova G-quadruplex. Nucleic Acids Research, 2006, 34, 4506-4514.	6.5	49
58	Conservation of $\hat{1}/4$ s \hat{a} ms Enzyme Motions in the Apo- and Substrate-Mimicked State. Journal of the American Chemical Society, 2005, 127, 9167-9176.	6.6	146
59	205Tl NMR Methods for the Characterization of Monovalent Cation Binding to Nucleic Acids. Journal of the American Chemical Society, 2005, 127, 16723-16732.	6.6	69
60	Solution Structure and Dynamics of LuxU from Vibrio harveyi, a Phosphotransferase Protein Involved in Bacterial Quorum Sensing. Journal of Molecular Biology, 2005, 347, 297-307.	2.0	20
61	Letter to the Editor:1H,15N, and13C chemical shift assignments of the Vibrio harveyi histidine phosphotransferase protein LuxU. Journal of Biomolecular NMR, 2004, 29, 551-552.	1.6	1
62	Measurement of Intermediate Exchange Phenomena. , 2004, 278, 185-232.		24
63	Multiple Time Scale Backbone Dynamics of Homologous Thermophilic and Mesophilic Ribonuclease HI Enzymes. Journal of Molecular Biology, 2004, 339, 855-871.	2.0	76
64	Protein Dynamics from Solution NMR. Cell Biochemistry and Biophysics, 2003, 37, 187-212.	0.9	73
65	FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. Journal of Biomolecular NMR, 2003, 26, 203-213.	1.6	194
66	Off-Resonance TROSY (R1Ïe^^R1) for Quantitation of Fast Exchange Processes in Large Proteins. Journal of the American Chemical Society, 2003, 125, 12064-12065.	6.6	27
67	Temperature Dependence of the Backbone Dynamics of Ribonuclease A in the Ground State and Bound to the Inhibitor 5â€~-Phosphothymidine (3â€~-5â€~)Pyrophosphate Adenosine 3â€~-Phosphateâ€. Biochemistry, 2042, 5279-5291.	0033;	43
68	Evidence for Flexibility in the Function of Ribonuclease Aâ€. Biochemistry, 2002, 41, 6072-6081.	1.2	123
69	Nuclear Magnetic Resonance Methods for Quantifying Microsecond-to-Millisecond Motions in Biological Macromolecules. Methods in Enzymology, 2001, 339, 204-238.	0.4	823
70	The Static Magnetic Field Dependence of Chemical Exchange Linebroadening Defines the NMR Chemical Shift Time Scale. Journal of the American Chemical Society, 2000, 122, 2867-2877.	6.6	316
71	A TROSY CPMG sequence for characterizing chemical exchange in large proteins. Journal of Biomolecular NMR, 1999, 15, 151-155.	1.6	217
72	A Relaxation-Compensated Carrâ^'Purcellâ^'Meiboomâ^'Gill Sequence for Characterizing Chemical Exchange by NMR Spectroscopy. Journal of the American Chemical Society, 1999, 121, 2331-2332.	6.6	624