E Cairrão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4704938/publications.pdf

Version: 2024-02-01

		304743	330143
56	1,504 citations	22	37
papers	citations	h-index	g-index
56	56	56	1921
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	In Vitro Model for Ischemic Stroke: Functional Analysis of Vascular Smooth Muscle Cells. Cellular and Molecular Neurobiology, 2022, 42, 2289-2304.	3.3	6
2	Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Molecular Aspects of Medicine, 2022, 87, 101054.	6.4	22
3	Regulation mechanisms of endocrine disruptors on vasodilation and vasoconstriction: Insights from ex vivo models. Biocell, 2022, 46, 1383-1389.	0.7	O
4	Pathways involved in the human vascular Tetrabromobisphenol A response: Calcium and potassium channels and nitric oxide donors. Toxicology, 2022, 470, 153158.	4.2	4
5	Effect of retinoic acid on the neurovascular unit: A review. Brain Research Bulletin, 2022, 184, 34-45.	3.0	9
6	PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. Journal of Cardiovascular Development and Disease, 2022, 9, 4.	1.6	9
7	Protein Interaction Network for Identifying Vascular Response of Metformin (Oral Antidiabetic). BioMedInformatics, 2022, 2, 217-233.	2.0	3
8	UV-B Filter Octylmethoxycinnamate Is a Modulator of the Serotonin and Histamine Receptors in Human Umbilical Arteries. Biomedicines, 2022, 10, 1054.	3.2	2
9	Endocrine-Disrupting Effects of Bisphenol A on the Cardiovascular System: A Review. Journal of Xenobiotics, 2022, 12, 181-213.	6.7	23
10	UV-B Filter Octylmethoxycinnamate Alters the Vascular Contractility Patterns in Pregnant Women with Hypothyroidism. Biomedicines, 2021, 9, 115.	3.2	7
11	UV-B filter octylmethoxycinnamate impaired the main vasorelaxant mechanism of human umbilical artery. Chemosphere, 2021, 277, 130302.	8.2	13
12	Implications of Endothelial Cell-Mediated Dysfunctions in Vasomotor Tone Regulation. Biologics, 2021, 1, 231-251.	4.1	11
13	Health toxicity effects of brominated flame retardants: From environmental to human exposure. Environmental Pollution, 2021, 285, 117475.	7.5	90
14	Update about the disruptingâ€effects of phthalates on the human reproductive system. Molecular Reproduction and Development, 2021, 88, 650-672.	2.0	31
15	Vascular mechanisms of testosterone: The non-genomic point of view. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105496.	2.5	39
16	Vascular Pathways of Testosterone: Clinical Implications. Journal of Cardiovascular Translational Research, 2020, 13, 55-72.	2.4	22
17	Phthalates Implications in the Cardiovascular System. Journal of Cardiovascular Development and Disease, 2020, 7, 26.	1.6	37
18	Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells, 2020, 9, 1956.	4.1	23

#	Article	IF	CITATIONS
19	Characterization of culture from smooth muscle cells isolated from rat middle cerebral arteries. Tissue and Cell, 2020, 66, 101400.	2.2	6
20	The Neurovascular Unit: Focus on the Regulation of Arterial Smooth Muscle Cells. Current Neurovascular Research, 2020, 16, 502-515.	1.1	12
21	UV-B Filter Octylmethoxycinnamate Induces Vasorelaxation by Ca2+ Channel Inhibition and Guanylyl Cyclase Activation in Human Umbilical Arteries. International Journal of Molecular Sciences, 2019, 20, 1376.	4.1	12
22	Triiodothyronine modulates neuronal plasticity mechanisms to enhance functional outcome after stroke. Acta Neuropathologica Communications, 2019, 7, 216.	5,2	28
23	Antioxidants as stabilizers of UV filters: an example for the UV-B filter octylmethoxycinnamate. Biomedical Dermatology, 2019, 3, .	7.7	24
24	Photoprotection of ultraviolet-B filters: Updated review of endocrine disrupting properties. Steroids, 2018, 131, 46-58.	1.8	42
25	How is the human umbilical artery regulated?. Journal of Obstetrics and Gynaecology Research, 2018, 44, 1193-1201.	1.3	31
26	Tributyltin Affects Rat Vascular Contractility Through L-Type Calcium Channels. International Journal of Environmental Research, 2018, 12, 215-221.	2.3	3
27	Tributyltin role on the serotonin and histamine receptors in human umbilical artery. Toxicology in Vitro, 2018, 50, 210-216.	2.4	13
28	Cardiovascular Response of Rat Aorta to Di-(2-ethylhexyl) Phthalate (DEHP) Exposure. Cardiovascular Toxicology, 2018, 18, 356-364.	2.7	21
29	Inhibition of L-type calcium channels by Bisphenol A in rat aorta smooth muscle. Journal of Toxicological Sciences, 2018, 43, 579-586.	1.5	30
30	Pre-Eclampsia and Eclampsia: An Update on the Pharmacological Treatment Applied in Portugal. Journal of Cardiovascular Development and Disease, 2018, 5, 3.	1.6	45
31	Variability of MMP/TIMP and TGF- \hat{l}^21 Receptors throughout the Clinical Progression of Chronic Venous Disease. International Journal of Molecular Sciences, 2018, 19, 6.	4.1	41
32	Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its significance on chronic venous insufficiency. Phlebology, 2017, 32, 334-341.	1.2	14
33	Genomic and Nongenomic Effects of Mifepristone at the Cardiovascular Level: A Review. Reproductive Sciences, 2017, 24, 976-988.	2.5	10
34	The effects of phthalates in the cardiovascular and reproductive systems: A review. Environment International, 2016, 94, 758-776.	10.0	224
35	Mifepristone is a Vasodilator Due to the Inhibition of Smooth Muscle Cells L-Type Ca2+ Channels. Reproductive Sciences, 2016, 23, 723-730.	2.5	10
36	Cyclic guanosine monophosphate compartmentation in human vascular smooth muscle cells. Cellular Signalling, 2016, 28, 109-116.	3.6	18

#	Article	IF	Citations
37	5α-Dihydrotestosterone regulates the expression of L-type calcium channels and calcium-binding protein regucalcin in human breast cancer cells with suppression of cell growth. Medical Oncology, 2015, 32, 228.	2.5	13
38	P326Regulation by androgens of umbilical artery tone of normotensive and hypertensive pregnant women. Cardiovascular Research, 2014, 103, S59.2-S59.	3.8	0
39	Testosterone and Atrial Natriuretic Peptide Share the Same Pathway to Induce Vasorelaxation of Human Umbilical Artery. Journal of Cardiovascular Pharmacology, 2014, 63, 461-465.	1.9	10
40	P382Cyclic guanosine monophosphate compartmentation in vascular smooth muscle cells. Cardiovascular Research, 2014, 103, S70.2-S70.	3.8	0
41	P112Calcium channels influence of mifipristone vasorelaxation on vascular smooth muscle cells. Cardiovascular Research, 2014, 103, S19.3-S19.	3.8	0
42	Polyazamacrocycles as Potential Antitumor Agents for Human Prostate Cancer Cells. Chemical Biology and Drug Design, 2013, 81, 517-526.	3.2	8
43	Long―and shortâ€ŧerm effects of androgens in human umbilical artery smooth muscle. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 181-189.	1.9	27
44	Non-genomic vasorelaxant effects of $17\hat{l}^2$ -estradiol and progesterone in rat aorta are mediated by L-type Ca2+ current inhibition. Acta Pharmacologica Sinica, 2012, 33, 615-624.	6.1	35
45	Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cellular and Molecular Life Sciences, 2012, 69, 247-266.	5.4	162
46	Targeting of Mitochondria-Endoplasmic Reticulum by Fluorescent Macrocyclic Compounds. PLoS ONE, 2011, 6, e27078.	2.5	15
47	Study of the mechanisms regulating human umbilical artery contractility. Health, 2010, 02, 321-331.	0.3	13
48	PKG is involved in testosterone-induced vasorelaxation of human umbilical artery. European Journal of Pharmacology, 2010, 640, 94-101.	3.5	31
49	Testosterone and Cholesterol Vasodilation of Rat Aorta Involves L-Type Calcium Channel Inhibition. Advances in Pharmacological Sciences, 2010, 2010, 1-10.	3.7	19
50	Regulation of Human Umbilical Artery Contractility By Different Serotonin and Histamine Receptors. Reproductive Sciences, 2009, 16, 1175-1185.	2.5	29
51	Isolation and culture of human umbilical artery smooth muscle cells expressing functional calcium channels. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 175-184.	1.5	32
52	Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 376, 375-383.	3.0	59
53	PDE4 and PDE5 regulate cyclic nucleotides relaxing effects in human umbilical arteries. European Journal of Pharmacology, 2008, 582, 102-109.	3.5	41
54	Fucus spp. as a Mercury Contamination Bioindicator in Costal Areas (Northwestern Portugal). Bulletin of Environmental Contamination and Toxicology, 2007, 79, 388-395.	2.7	29

E CAIRRãO

#	Article	IF	CITATIONS
55	17-beta-Estradiol and Progesterone Inhibit L-Type Ca2+ Current of Rat Aorta Smooth Muscle Cells. Portugaliae Electrochimica Acta, 2006, 24, 241-255.	1.1	2
56	Glutathione-S-transferase activity of Fucus spp. as a biomarker of environmental contamination. Aquatic Toxicology, 2004, 70, 277-286.	4.0	44