
Umashankar Male

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/47048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochimica Acta, 2014, 146, 242-248.	2.6	113
2	Effect of reduced graphene oxide–silica composite in polyaniline: electrode material for high-performance supercapacitor. Journal of Solid State Electrochemistry, 2015, 19, 3381-3388.	1.2	51
3	Preparation and performance of polyaniline–multiwall carbon nanotubes–titanium dioxide ternary composite electrode material for supercapacitors. Journal of Industrial and Engineering Chemistry, 2017, 49, 82-87.	2.9	49
4	Incorporation of polyaniline nanofibres on graphene oxide by interfacial polymerization pathway for supercapacitor. International Nano Letters, 2015, 5, 231-240.	2.3	42
5	Design and synthesis of polyaniline-grafted reduced graphene oxide via azobenzene pendants for high-performance supercapacitors. Polymer, 2017, 110, 242-249.	1.8	40
6	Use of surfactant in aniline polymerization with TiO2 to PANI-TiO2 for supercapacitor performance. Journal of Solid State Electrochemistry, 2014, 18, 1995-2003.	1.2	39
7	Synthesis and characterization of polyaniline-grafted CNT as electrode materials for supercapacitors. Macromolecular Research, 2017, 25, 1121-1128.	1.0	35
8	Coupling of breath figure method with interfacial polymerization: Bottom-surface functionalized honeycomb-patterned porous films. Polymer, 2017, 119, 206-211.	1.8	33
9	Surface functionalization of honeycomb-patterned porous poly(ε-caprolactone) films by interfacial polymerization of aniline. Polymer, 2016, 99, 623-632.	1.8	23
10	Polyaniline decorated honeycomb-patterned pores: Use of a reactive vapor in breath figure method. Polymer, 2017, 121, 149-154.	1.8	21
11	Controllable stereoselective synthesis of cis or trans pyrano and furano tetrahydroquinolines: Polyaniline-p-toluenesulfonate salt catalyzed one-pot aza-Diels–Alder reactions. Journal of Molecular Catalysis A, 2012, 352, 70-74.	4.8	20
12	Hybrid composite of nitrogen functionalized graphene–polyaniline electrode for high performance supercapacitor. RSC Advances, 2015, 5, 70675-70681.	1.7	19
13	Graphene oxide incorporated poly(ε-caprolactone) honeycomb-patterned porous polymer films by the breath figure method. Macromolecular Research, 2017, 25, 297-302.	1.0	18
14	In-situ pore filling of TiO2 nanoparticles in honeycomb patterned porous films: A modified breath figure method. Polymer, 2018, 135, 1-8.	1.8	18
15	Synthesis and performance of nickel hydroxide nanodiscs for redox supercapacitors. Ionics, 2016, 22, 1485-1491.	1.2	16
16	Poreâ€Selective SnS Functionalization in Honeycombâ€Patterned Films by a Breath Figure Process Accompanied by Chemical Reaction. Advanced Materials Interfaces, 2018, 5, 1801174.	1.9	16
17	Fabrication of pore-selective carboxyl group functionalized polyimide honeycomb-patterned porous films using KOH humidity. Polymer, 2018, 153, 86-94.	1.8	15
18	Formylated polystyrene for the fabrication of pore selective aldehyde group functionalized honeycomb patterned porous polystyrene films. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1181-1192.	2.4	13

UMASHANKAR MALE

#	Article	IF	CITATIONS
19	Effect of ferrocene on the fabrication of honeycomb-patterned porous polystyrene films and silver functionalization of the film. Polymer, 2019, 166, 55-62.	1.8	13
20	Aqueous, interfacial, and electrochemical polymerization pathways of aniline with thiophene: Nano size materials for supercapacitor. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
21	Fabrication of photo-responsive moth eye-like patterned poly(vinyl alcohol) films selectively containing TiO2 nanoparticles in the microdome. Polymer, 2018, 144, 103-110.	1.8	12
22	Fabrication of robust honeycomb patterned porous films by thermochemical cross-linking of polyimide. Polymer, 2019, 178, 121597.	1.8	12
23	Effect of honeycomb-patterned structure on electrical and magnetic behaviors of poly(É>-caprolactone)/capped magnetic nanoparticle composite films. Polymer, 2016, 87, 138-147.	1.8	11
24	Effect of UV illumination on the fabrication of honeycomb-patterned film in the photo-responsive poly(methylmethacrylate/azobenzene) copolymer. Macromolecular Research, 2016, 24, 350-358.	1.0	10
25	Reversible change of wettability in poly(É›-caprolactone/azobenzene) honeycomb-patterned films by UV and visible light illumination. Polymer Bulletin, 2017, 74, 4235-4249.	1.7	9
26	Polyaniline salt catalyzed synthesis of hyperbranched polyester and its use as dopant in polyaniline salt for coating, fluorescence, and supercapacitor electrode. Ionics, 2019, 25, 191-202.	1.2	9
27	Photo-regulated conductivity of polycaprolactone honeycomb-patterned porous films containing azobenzene-functionalized reduced graphene oxide. Macromolecular Research, 2017, 25, 849-855.	1.0	8
28	Selective Coating of SnS on the Bioâ€Inspired Mothâ€Eye Patterned PEDOT:PSS Polymer Films. Macromolecular Materials and Engineering, 2019, 304, 1800727.	1.7	7
29	Improved electrochemical performances of polyaniline by graphitized mesoporus carbon: Hybrid electrode for supercapacitor. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
30	Preparation of Gelatinâ€assisted Polypyrrole–Poly(3,4â€ethylenedioxythiophene) Composites. Bulletin of the Korean Chemical Society, 2016, 37, 1789-1796.	1.0	5
31	In situ surface selective functionalization of honeycomb patterned porous poly(ε-caprolactone) films using reactive substrate. Polymer, 2018, 147, 150-156.	1.8	4
32	Effect of Gelatin Incorporation on the Surface Morphology and Conductivity of Polyaniline/Silver Chloride Composites. Porrime, 2017, 41, 675-680.	0.0	0