
Radislav A Potyrailo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4704762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Digital electrical impedance analysis for single bacterium sensing and antimicrobial susceptibility testing. Lab on A Chip, 2021, 21, 1073-1083.	6.0	18
2	Direct laser writing of vapour-responsive photonic arrays. Journal of Materials Chemistry C, 2021, 9, 11674-11678.	5.5	19
3	Butterfly Wing Inspired High Performance Infrared Detection with Spectral Selectivity. Advanced Optical Materials, 2020, 8, 1901647.	7.3	7
4	Bio-inspired optics: general discussion. Faraday Discussions, 2020, 223, 183-194.	3.2	0
5	Extraordinary performance of semiconducting metal oxide gas sensors using dielectric excitation. Nature Electronics, 2020, 3, 280-289.	26.0	95
6	Bio-inspired gas sensing: boosting performance with sensor optimization guided by "machine learning― Faraday Discussions, 2020, 223, 161-182.	3.2	11
7	Kinetics Analysis of Multichannel Hydrogen Reactions on Plasmonic-Based Au–GdC Thin-Film Nanocomposites. Journal of Physical Chemistry C, 2019, 123, 17925-17932.	3.1	3
8	Multi-Gas Sensors for Enhanced Reliability of SOFC Operation. ECS Transactions, 2019, 91, 319-328.	0.5	7
9	Multivariable Electrical Resonant Sensors for Independent Quantitation of Aging and External Contaminants in Lubricating Oils. IEEE Sensors Journal, 2019, 19, 1542-1553.	4.7	10
10	Ubiquitous Sensing Network for Continuous Monitoring and Quantification of Methane Emissions. , 2019, , .		1
11	Label-free independent quantitation of viable and non-viable cells using a multivariable multi-resonant sensor. Bioelectrochemistry, 2019, 125, 97-104.	4.6	3
12	Multivariable bio-inspired photonic sensors for non-condensable gases. Journal of Optics (United) Tj ETQq0 0 0 rg	gBT /Overlo 2.2	ock 10 Tf 50
13	Investigation of plasmonic based nanocomposite thin films for high temperature gas sensing. , 2018, , .		0
14	Physical and Analytical Principles of Multivariable Gas and Liquid Sensors. , 2018, , .		1
15	High Sensitivity Plasmonic Sensing of Hydrogen over a Broad Dynamic Range Using Catalytic Au-CeO ₂ Thin Film Nanocomposites. ACS Sensors, 2018, 3, 2684-2692.	7.8	15

16	Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors. Chemical Society Reviews, 2017, 46, 5311-5346.	38.1	77
17	Toward high-value gas sensing in wearable and distrubuted formats: Discrimination of complex patterns of volatiles using multi-response RFID sensors. , 2017, , .		0
	Multivariable Sancars for Ubiquitous Monitoring of Cases in the Fra of Internet of Things and		

Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chemical Reviews, 2016, 116, 11877-11923. 18

#	Article	IF	CITATIONS
19	<i>A Special Section on</i> Embedded Sensors. Sensor Letters, 2016, 14, 1001-1002.	0.4	1
20	Design and Application of Variable Temperature Setup for Scanning Electron Microscopy in Gases and Liquids at Ambient Conditions. Microscopy and Microanalysis, 2015, 21, 765-770.	0.4	9
21	Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nature Communications, 2015, 6, 7959.	12.8	171
22	Towards Maintenanceâ€Free Biosensors for Hundreds of Bind/Release Cycles. Angewandte Chemie - International Edition, 2015, 54, 2174-2178.	13.8	16
23	Scaling Modeling of the Emitted Substance Dispersion Transported by Advection Caused by Non-homogeneous Wind Field and by Isotropic and Anisotropic Diffusion in Vicinity of Obstacles. Discontinuity, Nonlinearity, and Complexity, 2015, 4, 185-195.	0.2	0
24	Toward bioinspired nanostructures for selective vapor sensing: diverse vapor-induced spectral responses within iridescent scales of Morpho butterflies. Materials Research Society Symposia Proceedings, 2014, 1621, 197-207.	0.1	3
25	Discovery of the surface polarity gradient on iridescent <i>Morpho</i> butterfly scales reveals a mechanism of their selective vapor response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15567-15572.	7.1	93
26	A passive radio-frequency identification (RFID) gas sensor with self-correction against fluctuations of ambient temperature. Sensors and Actuators B: Chemical, 2013, 185, 587-593.	7.8	38
27	Selective Sensing of Individual Gases Using Graphene Devices. IEEE Sensors Journal, 2013, 13, 2818-2822.	4.7	71
28	Selective sensing of vapors of similar dielectric constants using peptide-capped gold nanoparticles on individual multivariable transducers. Analyst, The, 2013, 138, 4334.	3.5	19
29	Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing. Annual Review of Materials Research, 2013, 43, 307-334.	9.3	43
30	Towards Rational Design of Sensing Materials from Combinatorial Experiments. , 2013, , 271-313.		0
31	Bio-inspired Photonic Vapour Sensing: Lessons from Butterflies. , 2013, , .		0
32	Detection of Individual Vapors and Their Mixtures Using a Selectivityâ€Tunable Threeâ€Dimensional Network of Plasmonic Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 10360-10364.	13.8	24
33	Detection of Individual Vapors and Their Mixtures Using a Selectivityâ€Tunable Threeâ€Dimensional Network of Plasmonic Nanoparticles. Angewandte Chemie, 2013, 125, 10550-10554.	2.0	4
34	Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 994.	1.5	87
35	Selective Gas Sensing with a Single Pristine Graphene Transistor. Nano Letters, 2012, 12, 2294-2298.	9.1	361
36	Wireless sensors and sensor networks for homeland security applications. TrAC - Trends in Analytical Chemistry, 2012, 40, 133-145.	11.4	75

#	Article	IF	CITATIONS
37	Multisize CdSe Nanocrystal/Polymer Nanocomposites for Selective Vapor Detection Identified from High-Throughput Screening Experimentation. ACS Combinatorial Science, 2012, 14, 170-178.	3.8	16
38	Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nature Photonics, 2012, 6, 195-200.	31.4	167
39	Selective gas sensing by graphene. , 2012, , .		0
40	Ubiquitous Devices for Chemical Sensing. Springer Series on Chemical Sensors and Biosensors, 2012, , 237-264.	0.5	0
41	Battery-free Radio Frequency Identification (RFID) Sensors for Food Quality and Safety. Journal of Agricultural and Food Chemistry, 2012, 60, 8535-8543.	5.2	167
42	Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate. Analyst, The, 2012, 137, 2777.	3.5	43
43	4.5.1 Multivariable MHz and GHz Wireless Chem/Bio Sensors for Environmental, Industrial, and Security Applications. , 2012, , .		2
44	Lab-scale long-term operation of passive multivariable RFID temperature sensors integrated into single-use bioprocess components. , 2011, , .		2
45	Passive multivariable RFID pH sensors. , 2011, , .		8
46	Immobilization of aptamers onto unmodified glass surfaces for affordable biosensors. , 2011, , .		4
47	Combinatorial and High-Throughput Screening of Materials Libraries: Review of State of the Art. ACS Combinatorial Science, 2011, 13, 579-633.	3.8	403
48	Materials and Transducers Toward Selective Wireless Gas Sensing. Chemical Reviews, 2011, 111, 7315-7354.	47.7	250
49	Passive multivariable temperature and conductivity RFID sensors for singleâ€use biopharmaceutical manufacturing components. Biotechnology Progress, 2011, 27, 875-884.	2.6	25
50	Temperature-independent passive RFID pressure sensors for single-use bioprocess components. , 2011, , .		11
51	Multivariable passive RFID vapor sensors: Pilot-scale manufacturing and laboratory evaluation. , 2011, , \cdot		2
52	RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing. Measurement Science and Technology, 2011, 22, 082001.	2.6	26
53	Data processing in multivariable RFID vapor sensors. , 2011, , .		3

54 Selective Vapor Monitoring Using Individual Multivariable RFID Sensors. , 2011, , .

0

#	Article	IF	CITATIONS
55	Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6P18-C6P23.	1.2	39
56	Selective quantitation of vapors and their mixtures using individual passive multivariable RFID sensors. , 2010, , .		18
57	Passive gamma-resistant RFID tags integrated into gamma-sterilizable pharmaceutical components. , 2010, , .		3
58	Integration of passive multivariable RFID sensors into single-use biopharmaceutical manufacturing components. , 2010, , .		3
59	Label-free biosensing using passive radio-frequency identification (RFID) sensors. , 2009, , .		6
60	Theoretical and experimental development of label-free biosensors based on localized plasmon resonances on nanohole and nanopillar arrays. Proceedings of SPIE, 2009, , .	0.8	0
61	Multi-wavelength operation of optical disk drives for chemical and biological analysis. Sensors and Actuators B: Chemical, 2009, 136, 203-208.	7.8	13
62	RFID sensors based on ubiquitous passive 13.56â€MHz RFID tags and complex impedance detection. Wireless Communications and Mobile Computing, 2009, 9, 1318-1330.	1.2	66
63	Combinatorial Screening of Polymeric Sensing Materials Using RFID Sensors: Combined Effects of Plasticizers and Temperature. ACS Combinatorial Science, 2009, 11, 598-603.	3.3	21
64	Development of New Sensing Materials Using Combinatorial and High-Throughput Experimentation. , 2009, , 151-166.		0
65	Selective detection of chemical species in liquids and gases using radio-frequency identification (RFID) sensors. , 2009, , .		7
66	Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors. Journal of Applied Physics, 2009, 106, .	2.5	59
67	Photonic bandgap fiber-enabled Raman detection of nitrogen gas. , 2009, , .		3
68	Introduction to Combinatorial Methods for Chemical and Biological Sensors. , 2009, , 3-24.		5
69	Chemical Sensors: New Ideas for the Mature Field. , 2009, , 103-143.		0
70	Determination of Quantitative Structure–Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System. , 2009, , 455-470.		0
71	Combinatorial Methods for Chemical and Biological Sensors: Outlook. , 2009, , 483-488.		1
72	New Approach for Selective Vapor Sensing Using Structurally Colored Self-Assembled Films. Integrated Analytical Systems, 2009, , 77-95.	0.4	0

#	Article	IF	CITATIONS
73	High-Throughput Screening of Vapor Selectivity of Multisize CdSe Nanocrystal/Polymer Composite Films. , 2009, , 117-132.		0
74	Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. Talanta, 2008, 75, 624-628.	5.5	40
75	Combinatorial and High-Throughput Development of Sensing Materials:  The First 10 Years. Chemical Reviews, 2008, 108, 770-813.	47.7	232
76	Selective Chemical Sensing Using Structurally Colored Core-Shell Colloidal Crystal Films. IEEE Sensors Journal, 2008, 8, 815-822.	4.7	38
77	Quantitative Chemical Analysis using DVDs and Conventional Computer Optical Disk Drives. , 2007, , .		0
78	Wireless resonant sensor array for high-throughput screening of materials. Review of Scientific Instruments, 2007, 78, 072214.	1.3	21
79	Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives. Applied Optics, 2007, 46, 7007.	2.1	26
80	Multianalyte Chemical Identification and Quantitation Using a Single Radio Frequency Identification Sensor. Analytical Chemistry, 2007, 79, 45-51.	6.5	128
81	Combinatorial and High-Throughput Development of Polymer Sensor Coatings for Resonant and Optical Sensors. ACS Symposium Series, 2007, , 240-260.	0.5	0
82	Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics, 2007, 1, 123-128.	31.4	518
83	Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Applied Physics Letters, 2006, 88, .	3.3	60
84	Analog Signal Acquisition from Computer Optical Disk Drives for Quantitative Chemical Sensing. Analytical Chemistry, 2006, 78, 5893-5899.	6.5	75
85	High-Throughput Determination of Quantitative Structureâ~'Property Relationships Using a Resonant Multisensor System:  Solvent Resistance of Bisphenol A Polycarbonate Copolymers. Analytical Chemistry, 2006, 78, 3090-3096.	6.5	18
86	Chemical Sensors Based on Micromachined Transducers with Integrated Piezoresistive Readout. Analytical Chemistry, 2006, 78, 5633-5638.	6.5	8
87	Polymeric Sensor Materials: Toward an Alliance of Combinatorial and Rational Design Tools?. Angewandte Chemie - International Edition, 2006, 45, 702-723.	13.8	172
88	Development of Combinatorial Chemistry Methods for Coatings:Â High-Throughput Weathering Evaluation and Scale-Up of Combinatorial Leads. ACS Combinatorial Science, 2005, 7, 190-196.	3.3	22
89	Dual-response resonant chemical sensors for multianalyte analysis. Sensors and Actuators B: Chemical, 2005, 106, 249-252.	7.8	6
90	Submicrometer Cavity Surface Plasmon Sensors. Journal of Physical Chemistry B, 2005, 109, 15515-15519.	2.6	16

#	Article	IF	CITATIONS
91	Wireless sensor array system for combinatorial screening of sensor materials. Materials Research Society Symposia Proceedings, 2005, 894, 1.	0.1	2
92	Millimeter-scale surface nano-structuring using focused ion beam milling. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
93	A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre. Measurement Science and Technology, 2005, 16, 235-241.	2.6	26
94	Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays. Review of Scientific Instruments, 2005, 76, 062225.	1.3	26
95	Spectroscopic and imaging approaches for evaluation of properties of one-dimensional arrays of formulated polymeric materials fabricated in a combinatorial microextruder system. Review of Scientific Instruments, 2005, 76, 062222.	1.3	9
96	Introduction: Combinatorial instruments and techniques. Review of Scientific Instruments, 2005, 76, 062101.	1.3	6
97	Focused ion beam microscope as an analytical tool for nanoscale characterization of gradient-formulated polymeric sensor materials. Materials Research Society Symposia Proceedings, 2005, 894, 1.	0.1	0
98	Gas Sensor Materials Based on Semiconductor Nanocrystal / Polymer Composite Films. Materials Research Society Symposia Proceedings, 2005, 894, 1.	0.1	1
99	Combinatorial and High-Throughput Materials Research. Measurement Science and Technology, 2005, 16, .	2.6	4
100	Role of high-throughput characterization tools in combinatorial materials science. Measurement Science and Technology, 2005, 16, 1-4.	2.6	135
101	Multivariate Tools for Real-Time Monitoring and Optimization of Combinatorial Materials and Process Conditions. , 2004, , 87-123.		4
102	Enhancement in screening throughput and density of combinatorial libraries using wavelet analysis. Applied Physics Letters, 2004, 84, 5103-5105.	3.3	6
103	Parallel high-throughput microanalysis of materials using microfabricated full bridge device arrays. Applied Physics Letters, 2004, 84, 634-636.	3.3	5
104	Optical Trapping with Integrated Near-Field Apertures. Journal of Physical Chemistry B, 2004, 108, 13607-13612.	2.6	80
105	Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorial materials. Review of Scientific Instruments, 2004, 75, 2177-2186.	1.3	29
106	Determination of oxidative stability of polypropylene using chemical sensors. Polymer Degradation and Stability, 2004, 83, 375-381.	5.8	10
107	Evaluation of Process Degradation of Polymer Formulations Utilizing High-Throughput Preparation and Analysis Methods. Macromolecular Rapid Communications, 2004, 25, 264-269.	3.9	10
108	Sensors in Combinatorial Polymer Research. Macromolecular Rapid Communications, 2004, 25, 77-94.	3.9	34

#	Article	IF	CITATIONS
109	Boosting Sensitivity of Organic Vapor Detection with Silicone Block Polyimide Polymers. Analytical Chemistry, 2004, 76, 7023-7027.	6.5	28
110	Resonant Multisensor System for High-Throughput Determinations of Solvent/Polymer Interactions. ACS Combinatorial Science, 2004, 6, 869-873.	3.3	17
111	Recognition and Quantification of Perchloroethylene, Trichloroethylene, Vinyl Chloride, and Three Isomers of Dichloroethylene Using Acoustic Wave Sensor Array. Sensor Letters, 2004, 2, 31-36.	0.4	16
112	Combinatorial chemistry methods for coating development. Progress in Organic Coatings, 2003, 47, 112-119.	3.9	25
113	Combinatorial chemistry methods for coating development. Progress in Organic Coatings, 2003, 48, 219-226.	3.9	7
114	High-Throughput Fabrication, Performance Testing, and Characterization of One-Dimensional Libraries of Polymeric Compositions. Macromolecular Rapid Communications, 2003, 24, 123-130.	3.9	43
115	Analytical spectroscopic tools for high-throughput screening of combinatorial materials libraries. TrAC - Trends in Analytical Chemistry, 2003, 22, 374-384.	11.4	37
116	Development of Combinatorial Chemistry Methods for Coatings:  High-Throughput Adhesion Evaluation and Scale-Up of Combinatorial Leads. ACS Combinatorial Science, 2003, 5, 472-478.	3.3	58
117	Fluorescence Spectroscopy and Multivariate Spectral Descriptor Analysis for High-Throughput Multiparameter Optimization of Polymerization Conditions of Combinatorial 96-Microreactor Arrays. ACS Combinatorial Science, 2003, 5, 8-17.	3.3	46
118	High-Throughput Screening of Selectivity of Melt Polymerization Catalysts Using Fluorescence Spectroscopy and Two-Wavelength Fluorescence Imaging. Analytical Chemistry, 2003, 75, 4676-4681.	6.5	27
119	Applications of Discrete and Gradient Compositions in Polymer Research. Materials Research Society Symposia Proceedings, 2003, 804, 127.	0.1	0
120	High-Throughput Adhesion Evaluation and Scale-up of Combinatorial Leads of Organic Protective Coatings. Materials Research Society Symposia Proceedings, 2003, 804, 145.	0.1	1
121	Application of Combinatorial Chemistry Methods to The Development of Organic Coatings. Materials Research Society Symposia Proceedings, 2003, 804, 139.	0.1	0
122	Sensors for High-Throughput Materials Characterization: 24-channel Array of Quartz Crystal Microbalances. Materials Research Society Symposia Proceedings, 2003, 804, 211.	0.1	0
123	Acoustic Wave Sensors for High-Throughput Screening of Materials. , 2003, , 219-246.		3
124	Combinatorial Development of Organic Clear Coatings for Plastic Substrates and Scale-Up of Combinatorial Leads. , 2003, , 611-630.		0
125	Elements of High-Throughput Analysis in Combinatorial Materials Science. , 2003, , 1-13.		0
126	Dynamic high throughput screening of chemical libraries using acoustic-wave sensor system. Review of Scientific Instruments, 2002, 73, 1277-1283.	1.3	22

#	Article	IF	CITATIONS
127	<title>Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings</title> . , 2002, 4578, 145.		2
128	<title>Adaptation of spectroscopic tools from high-throughput screening of combinatorial chemistry libraries to process chemical analysis</title> . , 2002, , .		4
129	Development of Combinatorial Chemistry Methods for Coatings:Â High-Throughput Optimization of Curing Parameters of Coatings Libraries. Analytical Chemistry, 2002, 74, 5676-5680.	6.5	36
130	Development of Combinatorial Chemistry Methods for Coatings:Â High-Throughput Screening of Abrasion Resistance of Coatings Libraries. Analytical Chemistry, 2002, 74, 5105-5111.	6.5	55
131	The development of combinatorial chemistry methods for coating development. Progress in Organic Coatings, 2002, 45, 313-321.	3.9	66
132	High-Throughput Multilevel Performance Screening of Advanced Materials. Angewandte Chemie - International Edition, 2002, 41, 4230-4233.	13.8	36
133	Design and characterization of a radioluminescent temperature sensor. Analytica Chimica Acta, 2000, 412, 47-53.	5.4	1
134	Use of the original silicone cladding of an optical fiber as a reagent-immobilization medium for intrinsic chemical sensors. Fresenius' Journal of Analytical Chemistry, 1999, 364, 32-40.	1.5	11
135	Use of Analyte-Modulated Modal Power Distribution in Multimode Optical Fibers for Simultaneous Single-Wavelength Evanescent-Wave Refractometry and Spectrometry. Analytical Chemistry, 1999, 71, 4956-4964.	6.5	6
136	<title>Field evaluation of acoustic-wave chemical sensors for monitoring of organic solvents in groundwater</title> . , 1999, , .		6
137	<title>Advanced strategies for spatially resolved analyte mapping with distributed fiber optic sensors
for environmental and process applications</title> . , 1999, , .		1
138	<title>Recognition and quantitation of closely related chlorinated organic vapors with acoustic-wave chemical sensor arrays</title> . , 1999, 3856, 80.		5
139	A simple, highly stable scintillator light source for ultraviolet absorption-based sensors. Analytica Chimica Acta, 1998, 367, 153-157.	5.4	15
140	Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber. Analytica Chimica Acta, 1998, 370, 1-8.	5.4	42
141	Optical waveguide sensors in analytical chemistry: today's instrumentation, applications and trends for future development. Fresenius' Journal of Analytical Chemistry, 1998, 362, 349-373.	1.5	104
142	Adapting Selected Nucleic Acid Ligands (Aptamers) to Biosensors. Analytical Chemistry, 1998, 70, 3419-3425.	6.5	349
143	Optical Time-of-Flight Chemical Detection:Â Absorption-Modulated Fluorescence for Spatially Resolved Analyte Mapping in a Bidirectional Distributed Fiber-Optic Sensor. Analytical Chemistry, 1998, 70, 3407-3412.	6.5	29
144	Optical Time-of-Flight Chemical Detection:Â Spatially Resolved Analyte Mapping with Extended-Length Continuous Chemically Modified Optical Fibers. Analytical Chemistry, 1998, 70, 1453-1461.	6.5	22

#	Article	IF	CITATIONS
145	Near-Ultraviolet Evanescent-Wave Absorption Sensor Based on a Multimode Optical Fiber. Analytical Chemistry, 1998, 70, 1639-1645.	6.5	53
146	Distributed Fiber-Optic Chemical Sensor with Chemically Modified Plastic Cladding. Applied Spectroscopy, 1998, 52, 1092-1095.	2.2	12
147	Evaluation of Ultrasonic Nebulization for the Analysis of Transient Samples: A Theoretical Model and Practical Considerations. Applied Spectroscopy, 1998, 52, 1515-1521.	2.2	15
148	Scintillator Light Source for Chemical Sensing in the Near-Ultraviolet. Analytical Chemistry, 1997, 69, 3375-3379.	6.5	9
149	Kramers–Kronig analysis of molecular evanescent-wave absorption spectra obtained by multimode step-index optical fibers. Applied Optics, 1996, 35, 4102.	2.1	7
150	pH indicator based ammonia gas sensor: studies of spectral performance under variable conditions of temperature and humidity. Analyst, The, 1994, 119, 443.	3.5	27
151	Spectral studies of pH dye films for detection of toxic chemicals. , 1993, 1711, 293.		0
152	<title>Fiber optic and portable instruments for ammonia sensing in field operating conditions</title> . , 1993, , .		2
153	OPTICAL WAVEGUIDES IN ANALYTICAL CHEMISTRY: RECENT ADVANCES. Sensor Review, 1992, 12, 22-26.	1.8	3