
qingsong Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4704718/publications.pdf Version: 2024-02-01

OINCSONG LIANG

#	Article	IF	CITATIONS
1	High efficiency planar perovskite solar cell by surface disorder removal on mesoporous tin oxide. Surfaces and Interfaces, 2022, 28, 101584.	3.0	2
2	Phase segregation leading to tunable amplified spontaneous emission in mixed halide perovskites. Materials Letters, 2022, 313, 131843.	2.6	1
3	Facilitating the formation of SnO2 film via hydroxyl groups for efficient perovskite solar cells. Applied Surface Science, 2021, 552, 149459.	6.1	22
4	Tuning the microstructures of uniform carbon spheres by controlling the annealing conditions for high-performance lithium-ion full batteries and lithium-ion capacitors. Journal of Energy Storage, 2021, 39, 102625.	8.1	8
5	Phase segregation in mixed halide perovskite by post-treatment of methylammonium halides. Vacuum, 2021, 194, 110624.	3.5	4
6	Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. Journal of Materials Chemistry A, 2021, 9, 4781-4788.	10.3	21
7	Metal–organic framework-derived cobalt diselenide as an efficient electrocatalyst for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 12309-12316.	2.2	6
8	Synthesis of Agâ€loaded tungsten oxide microspheres and their improved photocatalytic activity. Micro and Nano Letters, 2020, 15, 58-63.	1.3	0
9	Enhanced photovoltaic performance of dye-sensitized solar cells based on electrodeposited sulfur-doped MSex (M=Co, Ni) films. Journal of Electroanalytical Chemistry, 2019, 852, 113522.	3.8	5
10	In situ electrodeposition of nickel cobalt selenidesÂon FTO as an efficient counter electrode for dye-sensitized solar cells. International Journal of Hydrogen Energy, 2019, 44, 23936-23946.	7.1	14
11	An electrodeposited amorphous cobalt sulphide nanobowl array with secondary nanosheets as a multifunctional counter electrode for enhancing the efficiency in a dye-sensitized solar cell. Electrochimica Acta, 2019, 324, 134896.	5.2	11
12	Electrodeposited cobalt and nickel selenides as high-performance electrocatalytic materials for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 9429-9437.	2.2	18
13	Improved performance in dye-sensitized solar cells via controlling crystalline structure of nickel selenide. Journal of Materials Science, 2018, 53, 7672-7682.	3.7	18
14	Synthesis of Various TiO2 Micro-/Nano-Structures and Their Photocatalytic Performance. Materials, 2018, 11, 995.	2.9	15
15	Vertically aligned Ni 3 Se 2 arrays with dendritic-like structure as efficient counter electrode of dye-sensitized solar cells. Materials Science in Semiconductor Processing, 2017, 66, 241-246.	4.0	8
16	Cobalt-nickel based ternary selenides as high-efficiency counter electrode materials for dye-sensitized solar cells. Electrochimica Acta, 2017, 235, 672-679.	5.2	40
17	Enhanced performance of dye-sensitized solar cells based on P25/Ta2O5 composite films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	18
18	Facile synthesis of Ni3Se2 nanomaterials for dye-sensitized solar cells. , 2016, , .		0

2

QINGSONG JIANG

#	Article	IF	CITATIONS
19	Co0.85Se hollow nanoparticles as Pt-free counter electrode materials for dye-sensitized solar cells. Materials Letters, 2015, 153, 114-117.	2.6	45
20	High-performance Co9Se8/CoSe counter electrode for dye-sensitized solar cells. Journal of Sol-Gel Science and Technology, 2015, 74, 168-174.	2.4	10
21	Fabrication of photonic crystal heterostructures by a simple vertical deposition technique. Journal of Materials Science, 2014, 49, 1832-1838.	3.7	9
22	Enhanced performance of dye-sensitized solar cells using silica/gold core–shell spheres modified photoanodes. Materials Letters, 2014, 134, 16-19.	2.6	14
23	Tunable optical stop band of silica shell photonic crystals. Journal of Sol-Gel Science and Technology, 2013, 67, 565-572.	2.4	4
24	Assembling ultra-thick and crack-free colloidal crystals via an isothermal heating evaporation induced self-assembly method. Journal of Non-Crystalline Solids, 2012, 358, 1611-1616.	3.1	14
25	Fabrication and optical properties of silica shell photonic crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 202-208.	4.7	8