List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4704706/publications.pdf Version: 2024-02-01

		53794	82547
221	6,780	45	72
papers	citations	h-index	g-index
232	232	232	5137
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 2019, 236, 124364.	8.2	475
2	Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 2021, 780, 146494.	8.0	261
3	Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma, 2019, 338, 445-452.	5.1	208
4	Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena, 2019, 174, 95-103.	5.0	167
5	GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of the Total Environment, 2019, 658, 160-177.	8.0	150
6	Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Human and Ecological Risk Assessment (HERA), 2020, 26, 1-16.	3.4	131
7	An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecological Engineering, 2017, 108, 162-171.	3.6	129
8	Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of the Total Environment, 2016, 565, 1165-1174.	8.0	125
9	Hydrological and erosional impact and farmer's perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agriculture, Ecosystems and Environment, 2018, 258, 49-58.	5.3	111
10	Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology, 2017, 285, 186-204.	2.6	107
11	Five decades of soil erosion research in "terroirâ€: The State-of-the-Art. Earth-Science Reviews, 2018, 179, 436-447.	9.1	107
12	Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma, 2017, 296, 47-59.	5.1	106
13	Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography, 2018, 42, 202-219.	3.2	99
14	Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma, 2020, 363, 114139.	5.1	99
15	The multidisciplinary origin of soil geography: A review. Earth-Science Reviews, 2018, 177, 114-123.	9.1	98
16	Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment, 2017, 574, 204-215.	8.0	96
17	Soil Erosion as an Environmental Concern in Vineyards. The Case Study of Celler del Roure, Eastern Spain, by Means of Rainfall Simulation Experiments. Beverages, 2018, 4, 31.	2.8	96
18	Conventional and digital soil mapping in Iran: Past, present, and future. Catena, 2020, 188, 104424.	5.0	94

#	Article	IF	CITATIONS
19	Development and analysis of the Soil Water Infiltration Global database. Earth System Science Data, 2018, 10, 1237-1263.	9.9	85
20	High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena, 2016, 145, 274-284.	5.0	82
21	Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmentalAcovariates. Catena, 2022, 208, 105723.	5.0	82
22	Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere, 2018, 28, 617-631.	4.0	81
23	Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy, 2018, 75, 734-745.	5.6	80
24	Soil erosion modelling: A bibliometric analysis. Environmental Research, 2021, 197, 111087.	7.5	78
25	Real cover crops contribution to soil organic carbon sequestration in sloping vineyard. Science of the Total Environment, 2019, 652, 300-306.	8.0	77
26	Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. Journal of Environmental Management, 2017, 202, 268-275.	7.8	76
27	Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms. IEEE Access, 2021, 9, 65503-65523.	4.2	76
28	Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley,) Tj ETQq0 0 0 rgBT $/$	Overlock 1 2.8	.0 <u>Tf</u> 50 382
29	Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. Air, Soil and Water Research, 2020, 13, 117862212097749.	2.5	69
30	Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of central Iran. Environmental Monitoring and Assessment, 2018, 190, 192.	2.7	67
31	Soil Erosion Processes in European Vineyards: A Qualitative Comparison of Rainfall Simulation Measurements in Germany, Spain and France. Hydrology, 2016, 3, 6.	3.0	65
32	Assessment of the impact of different vegetation patterns on soil erosion processes on semiarid loess slopes. Earth Surface Processes and Landforms, 2018, 43, 1860-1870.	2.5	63
33	Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Scientific Reports, 2021, 11, 6496.	3.3	63
34	Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley. Agriculture, Ecosystems and Environment, 2016, 233, 158-170.	5.3	61

35	Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms, 2018, 43, 2193-2206.	2.5	61
36	Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Cuadernos De Investigacion Geografica, 2019, 45, 271-286.	1.1	61

#	Article	IF	CITATIONS
37	Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena, 2020, 186, 104354.	5.0	60
38	Soil Physical Quality of Citrus Orchards Under Tillage, Herbicide, and Organic Managements. Pedosphere, 2018, 28, 463-477.	4.0	58
39	Vicia sativa Roth. Can Reduce Soil and Water Losses in Recently Planted Vineyards (Vitis vinifera L.). Earth Systems and Environment, 2020, 4, 827-842.	6.2	55
40	Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environmental Monitoring and Assessment, 2018, 190, 356.	2.7	52
41	Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. Journal of Hydrology, 2019, 571, 390-405.	5.4	49
42	Proposing a Novel Predictive Technique for Gully Erosion Susceptibility Mapping in Arid and Semi-arid Regions (Iran). Remote Sensing, 2019, 11, 2577.	4.0	49
43	Impact of lithology and soil properties on abandoned dryland terraces during the early stages of soil erosion by water in south-east Spain. Hydrological Processes, 2017, 31, 3095-3109.	2.6	48
44	Impact of Farmland Abandonment on Water Resources and Soil Conservation in Citrus Plantations in Eastern Spain. Water (Switzerland), 2019, 11, 824.	2.7	48
45	Improving stock unearthing method to measure soil erosion rates in vineyards. Ecological Indicators, 2018, 85, 509-517.	6.3	46
46	Connecting the public with soil to improve human health. European Journal of Soil Science, 2019, 70, 898-910.	3.9	45
47	Soil compaction under different management practices in a Croatian vineyard. Arabian Journal of Geosciences, 2017, 10, 1.	1.3	44
48	Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards?. Ecohydrology and Hydrobiology, 2020, 20, 59-72.	2.3	44
49	The potential of straw mulch as a natureâ€based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment. Land Degradation and Development, 2020, 31, 1877-1889.	3.9	44
50	Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-Mosel) Tj ETQqO	0 0 _{1.9} BT /(Dverlock 10 Tf
51	CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Scientific Reports, 2021, 11, 7273.	3.3	42
52	Short-term low-severity spring grassland fire impacts on soil extractable elements and soil ratios in Lithuania. Science of the Total Environment, 2017, 578, 469-475.	8.0	41
53	Role of rock fragment cover on runoff generation and sediment yield in tilled vineyards. European Journal of Soil Science, 2017, 68, 864-872.	3.9	39
54	Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern	2.7	39

Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water (Switzerland), 2020, 12, 1539. 2.7 54

#	Article	IF	CITATIONS
55	Assessment of agri-spillways as a soil erosion protection measure in Mediterranean sloping vineyards. Journal of Mountain Science, 2017, 14, 1009-1022.	2.0	37
56	Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory. Catena, 2021, 200, 105178.	5.0	37
57	Multiple surface runoff and soil loss responses by sandstone morphologies to land-use and precipitation regimes changes in the Loess Plateau, China. Catena, 2022, 217, 106477.	5.0	37
58	Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. Journal of Hydrology, 2018, 556, 749-758.	5.4	36
59	Land use change effects on soil quality and biological fertility: A case study in northern Iran. European Journal of Soil Biology, 2019, 95, 103119.	3.2	36
60	Disaggregating and updating a legacy soil map using DSMART, fuzzy c-means and k-means clustering algorithms in Central Iran. Geoderma, 2019, 340, 249-258.	5.1	35
61	Estimating Human Impacts on Soil Erosion Considering Different Hillslope Inclinations and Land Uses in the Coastal Region of Syria. Water (Switzerland), 2020, 12, 2786.	2.7	34
62	Updated Measurements in Vineyards Improves Accuracy of Soil Erosion Rates. Agronomy Journal, 2018, 110, 411-417.	1.8	33
63	The age of vines as a controlling factor of soil erosion processes in Mediterranean vineyards. Science of the Total Environment, 2018, 616-617, 1163-1173.	8.0	32
64	Determining the spatial distribution of soil properties using the environmental covariates and multivariate statistical analysis: a case study in semi-arid regions of Iran. Journal of Arid Land, 2019, 11, 551-566.	2.3	31
65	Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates. Land, 2020, 9, 93.	2.9	31
66	Soil Erosion Induced by the Introduction of New Pasture Species in a Faxinal Farm of Southern Brazil. Geosciences (Switzerland), 2018, 8, 166.	2.2	30
67	Testing simple scaling in soil erosion processes at plot scale. Catena, 2018, 167, 171-180.	5.0	30
68	Analysis of Weather-Type-Induced Soil Erosion in Cultivated and Poorly Managed Abandoned Sloping Vineyards in the AxarquÃa Region (Málaga, Spain). Air, Soil and Water Research, 2019, 12, 117862211983940.	2.5	30
69	Assessment of the Spatiotemporal Effects of Land Use Changes on Runoff and Nitrate Loads in the Talar River. Water (Switzerland), 2018, 10, 445.	2.7	29
70	Impacts of rainstorms on soil erosion and organic matter for different cover crop systems in the western coast agricultural region of Syria. Soil Use and Management, 2021, 37, 196-213.	4.9	29
71	Identifying the Key Information and Land Management Plans for Water Conservation under Dry Weather Conditions in the Border Areas of the Syr Darya River in Kazakhstan. Water (Switzerland), 2018, 10, 1754.	2.7	28
72	Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals. Catena, 2018, 167, 327-339.	5.0	28

#	Article	IF	CITATIONS
73	Sustainable grazing. Current Opinion in Environmental Science and Health, 2018, 5, 42-46.	4.1	27
74	Comparative Analysis of Splash Erosion Devices for Rainfall Simulation Experiments: A Laboratory Study. Water (Switzerland), 2019, 11, 1228.	2.7	27
75	Preliminary Effects of Crop Residue Management on Soil Quality and Crop Production under Different Soil Management Regimes in Corn-Wheat Rotation Systems. Agronomy, 2021, 11, 302.	3.0	27
76	Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning. Geocarto International, 2022, 37, 8230-8253.	3.5	27
77	Rainfall-simulated quantification of initial soil erosion processes in sloping and poorly maintained terraced vineyards - Key issues for sustainable management systems. Science of the Total Environment, 2019, 660, 1047-1057.	8.0	26
78	Effectiveness of vegetative buffer strips at reducing runoff, soil erosion, and nitrate transport during degraded hillslope restoration in northern Iran. Land Degradation and Development, 2018, 29, 3194-3203.	3.9	25
79	Heavy metal uptake by plants from wastewater of different pulp concentrations and contaminated soils. Journal of Cleaner Production, 2021, 296, 126345.	9.3	25
80	The increase of rainfall erosivity and initial soil erosion processes due to rainfall acidification. Hydrological Processes, 2019, 33, 261-270.	2.6	24
81	A wind tunnel experiment to investigate the effect of polyvinyl acetate, biochar, and bentonite on wind erosion control. Archives of Agronomy and Soil Science, 2019, 65, 1049-1062.	2.6	24
82	Using fuzzy-AHP and parametric technique to assess soil fertility status in Northeast of Iran. Journal of Mountain Science, 2020, 17, 931-948.	2.0	24
83	Effects of parent material on soil erosion within Mediterranean new vineyard plantations. Engineering Geology, 2018, 246, 255-261.	6.3	23
84	Revisiting the Environmental Kuznets Curve: The Spatial Interaction between Economy and Territory. Economies, 2020, 8, 74.	2.5	23
85	Effects of solarisation on soil thermal-physical properties under different soil treatments: A review. Geoderma, 2020, 363, 114137.	5.1	23
86	Assessment of temporal and spatial water quality in international Gomishan Lagoon, Iran, using multivariate analysis. Environmental Monitoring and Assessment, 2018, 190, 314.	2.7	22
87	Comparing Transient and Steady-State Analysis of Single-Ring Infiltrometer Data for an Abandoned Field Affected by Fire in Eastern Spain. Water (Switzerland), 2018, 10, 514.	2.7	22
88	Prediction of factors affecting activation of soil erosion by mathematical modeling at pedon scale under laboratory conditions. Scientific Reports, 2020, 10, 20163.	3.3	22
89	Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire Safety Journal, 2021, 122, 103318.	3.1	22
90	Temporal changes in soil water erosion on sloping vineyards in the Ruwer- Mosel Valley. The impact of age and plantation works in young and old vines. Journal of Hydrology and Hydromechanics, 2017, 65, 402-409.	2.0	21

#	Article	IF	CITATIONS
91	Detailed assessment of spatial and temporal variations in river channel changes and meander evolution as a preliminary work for effective floodplain management. The example of SajÃ ³ River, Hungary. Journal of Environmental Management, 2019, 248, 109277.	7.8	21
92	Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment. Agronomy, 2019, 9, 276.	3.0	21
93	Determining the best ISUM (Improved stock unearthing Method) sampling point number to model long-term soil transport and micro-topographical changes in vineyards. Computers and Electronics in Agriculture, 2019, 159, 147-156.	7.7	21
94	Effects of Applying Liquid Swine Manure on Soil Quality and Yield Production in Tropical Soybean Crops (ParanĂį, Brazil). Sustainability, 2019, 11, 3898.	3.2	20
95	On-Site Water and Wind Erosion Experiments Reveal Relative Impact on Total Soil Erosion. Geosciences (Switzerland), 2019, 9, 478.	2.2	20
96	Integration of PCA and Fuzzy Clustering for Delineation of Soil Management Zones and Cost-Efficiency Analysis in a Citrus Plantation. Sustainability, 2020, 12, 5809.	3.2	20
97	Regional Farmers' Perception and Societal Issues in Vineyards Affected by High Erosion Rates. Land, 2021, 10, 205.	2.9	20
98	Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices. Scientific Reports, 2021, 11, 20548.	3.3	20
99	Assessment of pollution in roadside soils by using multivariate statistical techniques and contamination indices. SN Applied Sciences, 2019, 1, 1.	2.9	19
100	Spatial Variability of Rainfed WheatÂProduction Under the Influence of Topography and Soil Properties in Loess-Derived Soils, Northern Iran. International Journal of Plant Production, 2020, 14, 597-608.	2.2	19
101	Variación espacio-temporal de los procesos hidrológicos del suelo en viñedos con elevadas pendientes (Valle del Ruwer-Mosela, Alemania). Cuadernos De Investigacion Geografica, 2016, 42, 281-306.	1.1	19
102	Combining the Stock Unearthing Method and Structure-from-Motion Photogrammetry for a Gapless Estimation of Soil Mobilisation in Vineyards. ISPRS International Journal of Geo-Information, 2018, 7, 461.	2.9	18
103	The Impact of the Age of Vines on Soil Hydraulic Conductivity in Vineyards in Eastern Spain. Water (Switzerland), 2018, 10, 14.	2.7	18
104	A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties. Remote Sensing, 2022, 14, 472.	4.0	18
105	A comparative analysis of data mining techniques for agricultural and hydrological drought prediction in the eastern Mediterranean. Computers and Electronics in Agriculture, 2022, 197, 106925.	7.7	18
106	lssues of Meander Development: Land Degradation or Ecological Value? The Example of the Sajó River, Hungary. Water (Switzerland), 2018, 10, 1613.	2.7	17
107	Digital mapping of soil texture classes for efficient land management in the Piedmont plain of Iran. Soil Use and Management, 2022, 38, 1705-1735.	4.9	17
108	Biomagnetic monitoring of atmospheric heavy metal pollution using pine needles: the case study of Isfahan, Iran. Environmental Science and Pollution Research, 2020, 27, 31555-31566.	5.3	16

#	Article	IF	CITATIONS
109	Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques. Forest Ecosystems, 2021, 8, .	3.1	16
110	Land management impacts on soil properties and initial soil erosion processes in olives and vegetable crops. Journal of Hydrology and Hydromechanics, 2020, 68, 328-337.	2.0	16
111	Light pollution: A review of the scientific literature. Infrastructure Asset Management, 2023, 10, 367-392.	1.6	16
112	Examining the Effectiveness of Catch Crops as a Nature-Based Solution to Mitigate Surface Soil and Water Losses as an Environmental Regional Concern. Earth Systems and Environment, 2022, 6, 29-44.	6.2	15
113	Determining Land Management Zones Using Pedo-Geomorphological Factors in Potential Degraded Regions to Achieve Land Degradation Neutrality. Land, 2019, 8, 92.	2.9	14
114	Soil erosion processes in subtropical plantations (Diospyros kaki) managed under flood irrigation in Eastern Spain. Singapore Journal of Tropical Geography, 2020, 41, 120-135.	0.9	14
115	Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods. Agriculture (Switzerland), 2020, 10, 266.	3.1	14
116	Population Trends and Urbanization: Simulating Density Effects Using a Local Regression Approach. ISPRS International Journal of Geo-Information, 2020, 9, 454.	2.9	14
117	Land-use changes and precipitation cycles to understand hydrodynamic responses in semiarid Mediterranean karstic watersheds. Science of the Total Environment, 2022, 819, 153182.	8.0	14
118	Rainfall and land management effects on erosion and soil properties in traditional Brazilian tobacco plantations. Hydrological Sciences Journal, 2018, 63, 1008-1019.	2.6	13
119	Assessing the hydrological effects of land-use changes on a catchment using the Markov chain and WetSpa models. Hydrological Sciences Journal, 2020, 65, 2604-2615.	2.6	13
120	Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin. Atmosphere, 2020, 11, 609.	2.3	13
121	Long-term changes in rainfed olive production, rainfall and farmer's income in Bailén (Jaén, Spain). Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 1.	1.3	13
122	Impact of Climate Change on Eye Diseases and Associated Economical Costs. International Journal of Environmental Research and Public Health, 2021, 18, 7197.	2.6	13
123	The use of multivariate statistical analysis and soil quality indices as tools to be included in regional management plans. A case study from the Mashhad Plain, Iran. Cuadernos De Investigacion Geografica, 2019, 45, 687.	1.1	13
124	Evaluation of soil erosion and sediment deposition rates by the 137Cs fingerprinting technique at different hillslope positions on a catchment. Environmental Monitoring and Assessment, 2020, 192, 717.	2.7	12
125	Spatial variability of soil quality within management zones: Homogeneity and purity of delineated zones. Catena, 2022, 209, 105835.	5.0	12
126	Assessment of the Sustainability of the Territories Affected by Gully Head Advancements through Aerial Photography and Modeling Estimations: A Case Study on Samal Watershed, Iran. Sustainability, 2018, 10, 2909.	3.2	11

#	Article	IF	CITATIONS
127	Anthropogenic Disturbances and Precipitation Affect Karst Sediment Discharge in the Nandong Underground River System in Yunnan, Southwest China. Sustainability, 2020, 12, 3006.	3.2	11
128	Desertification and Degradation Risks vs Poverty: A Key Topic in Mediterranean Europe. Cuadernos De Investigacion Geografica, 2022, 48, 23-40.	1.1	11
129	Spatial variability of soil roughness in persimmon plantations: A new combined ISUM (improved stock) Tj ETQq1 1	0.784314 6.3	4 rgBT /Over
130	Dynamics of Runoff and Soil Erosion on Abandoned Steep Vineyards in the Mosel Area, Germany. Water (Switzerland), 2019, 11, 2596.	2.7	10
131	The Use of Straw Mulches to Mitigate Soil Erosion under Different Antecedent Soil Moistures. Water (Switzerland), 2020, 12, 2518.	2.7	10
132	In-Between â€~Smart' Urban Growth and â€~Sluggish' Rural Development? Reframing Population Dynamic Greece, 1940–2019. Sustainability, 2020, 12, 6165.	s jn 3.2	10
133	Estimating Soil Available Phosphorus Content through Coupled Wavelet–Data-Driven Models. Sustainability, 2020, 12, 2150.	3.2	10
134	Determining the potential impacts of fire and different land uses on splash erosion in the margins of drylands. Journal of Arid Environments, 2021, 186, 104419.	2.4	10
135	Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region. Climate, 2021, 9, 64.	2.8	10
136	Assessing environmental changes in abandoned German vineyards. Understanding key issues for restoration management plans. Hungarian Geographical Bulletin, 2018, 67, 319-332.	0.9	10
137	Replacing chemical fertilizers with organic and biological ones in transition to organic farming systems in saffron (Crocus sativus) cultivation. Chemosphere, 2022, 307, 135537.	8.2	10
138	The Impact of Vineyard Abandonment on Soil Properties and Hydrological Processes. Vadose Zone Journal, 2017, 16, 1-7.	2.2	9
139	Effects of Roughness Coefficients and Complex Hillslope Morphology on Runoff Variables under Laboratory Conditions. Water (Switzerland), 2019, 11, 2550.	2.7	9
140	Assessing previous land-vegetation productivity relationships on mountainous areas hosting coming Winter Olympics Games in 2022. Science of the Total Environment, 2021, 788, 147870.	8.0	8
141	Evaluating soil quality status of fluvisols at the regional scale: A multidisciplinary approach crossing multiple variables. River Research and Applications, 2023, 39, 1367-1381.	1.7	8
142	Estimating Non-Sustainable Soil Erosion Rates in the Tierra de Barros Vineyards (Extremadura, Spain) Using an ISUM Update. Applied Sciences (Switzerland), 2019, 9, 3317.	2.5	7
143	Automotive Radar in a UAV to Assess Earth Surface Processes and Land Responses. Sensors, 2020, 20, 4463.	3.8	7
144	Assessment of drainage network analysis methods to rank sediment yield hotspots. Hydrological Sciences Journal, 2021, 66, 904-918.	2.6	7

#	Article	IF	CITATIONS
145	Assessment of Soil Redistribution Following Land Rehabilitation with an Apple Orchard in Hilly Regions of Central Iran. Agronomy, 2022, 12, 451.	3.0	7
146	Sostenibilidad de los cultivos subtropicales: claves para el manejo del suelo, el uso agrÃcola y la Ordenación del Territorio. Cuadernos Geograficos, 2022, 61, 150-167.	0.5	7
147	Assessment of Water Quality Using Multivariate Statistical Analysis in the Gharaso River, Northern Iran. Water Science and Technology Library, 2018, , 227-253.	0.3	6
148	Integrating <i>in situ</i> measurements of an index of connectivity to assess soil erosion processes in vineyards. Hydrological Sciences Journal, 2020, 65, 671-679.	2.6	6
149	Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure―Experimental Research in Eastern Spain. Atmosphere, 2020, 11, 551.	2.3	6
150	Analyzing Regional Geographic Challenges: The Resilience of Chinese Vineyards to Land Degradation Using a Societal and Biophysical Approach. Land, 2021, 10, 227.	2.9	6
151	Impact of roof rain water harvesting of runoff capture and household consumption. Environmental Science and Pollution Research, 2021, 28, 49529-49540.	5.3	6
152	Assessing Variation of Soil Quality in Agroecosystem in an Arid Environment Using Digital Soil Mapping. Agronomy, 2022, 12, 578.	3.0	6
153	Análisis de los cambios de usos del suelo en el área de Casapalma (Valle del Guadalhorce, Málaga) entre 1991 y 2007. Papeles De GeografÃÂa, 2014, , 157.	0.1	5
154	Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition. Plants, 2019, 8, 503.	3.5	5
155	A new digital electromechanical system for measurement of soil bulk density. Computers and Electronics in Agriculture, 2019, 156, 227-242.	7.7	5
156	Controller for a Low-Altitude Fixed-Wing UAV on an Embedded System to Assess Specific Environmental Conditions. International Journal of Aerospace Engineering, 2020, 2020, 1-10.	0.9	5
157	Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments. Sustainability, 2021, 13, 789.	3.2	5
158	Soil Degradation and Socioeconomic Systems' Complexity: Uncovering the Latent Nexus. Land, 2021, 10, 30.	2.9	5
159	Suburban Fertility and Metropolitan Cycles: Insights from European Cities. Sustainability, 2021, 13, 2181.	3.2	5
160	Uncovering the Role of Biophysical Factors and Socioeconomic Forces Shaping Soil Sensitivity to Degradation: Insights from Italy. Soil Systems, 2021, 5, 11.	2.6	5
161	Impacts of landâ€use changes on soil fertility in Okomu Forest Reserve, Southern Nigeria. Land Degradation and Development, 2021, 32, 2130-2142.	3.9	5
162	Assessing vegetation community distribution characteristics and succession stages in mountainous areas hosting coming Winter Olympics Games. Journal of Mountain Science, 2021, 18, 2870-2887.	2.0	5

#	Article	IF	CITATIONS
163	Crossing longâ€ŧerm datasets of land use, economy and demography variations in karst wetland areas to detect possible microclimate changes. Land Degradation and Development, 0, , .	3.9	5
164	A comparison of different solarisation systems and their impacts on soil thermal characteristics—an application in cultivated soils close to Baghdad, a highly populated city in Iraq. Environmental Monitoring and Assessment, 2020, 192, 13.	2.7	4
165	The Performance of the DES Sensor for Estimating Soil Bulk Density under the Effect of Different Agronomic Practices. Geosciences (Switzerland), 2020, 10, 117.	2.2	4
166	The impact of traditional land use management on soil quality in Northeastern Himalayas (India). Geographia Polonica, 2021, 94, 91-109.	1.0	4
167	Dealing with soil organic carbon modeling: some insights from an agro-ecosystem in Northeast Iran. Earth Science Informatics, 0, , 1.	3.2	4
168	Sand drift potential impacts within desert railway corridors: a case study of the Sarakhs-Mashhad railway line. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	4
169	Earthworm Abundance Changes Depending on Soil Management Practices in Slovenian Vineyards. Agronomy, 2021, 11, 1241.	3.0	4
170	Factors determining the soil available water during the last two decades (1997–2019) in southern Spain. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	4
171	Ratio LE para el ajuste de perfiles longitudinales en cursos fluviales de montaña. Aplicación a la cuenca del RÃo Almáchar (Málaga, España). Cuaternario Y Geomorfologia, 2015, 29, 57.	0.2	4
172	Predicting Soil Cation Exchange Capacity in Entisols with Divergent Textural Classes: The Case of Northern Sudan Soils. Air, Soil and Water Research, 2021, 14, 117862212110423.	2.5	4
173	Designing grazing susceptibility to land degradation index (GSLDI) in hilly areas. Scientific Reports, 2022, 12, .	3.3	4
174	The Effect of Hydrology on Soil Erosion. Water (Switzerland), 2020, 12, 839.	2.7	3
175	A Regional Geography Approach to Understanding the Environmental Changes as a Consequence of the COVID-19 Lockdown in Highly Populated Spanish Cities. Applied Sciences (Switzerland), 2021, 11, 2912.	2.5	3
176	Surface roughness effects on soil loss rate in complex hillslopes under laboratory conditions. Catena, 2021, 206, 105503.	5.0	3
177	Improved Stock Unearthing Method (ISUM) as a tool to determine the value of alternative topographic factors in estimating inter-row soil mobilisation in citrus orchards. Spanish Journal of Soil Science, 0, 10, .	0.0	3
178	Soil losses due to leek and groundnut root crop harvesting: An unstudied regional problem in Turkey. Land Degradation and Development, 2022, 33, 1799-1809.	3.9	3
179	Spatial-temporal heterogeneity of environmental factors and ecosystem functions in farmland shelterbelt systems in desert oasis ecotones. Agricultural Water Management, 2022, 271, 107790.	5.6	3
180	Mapping Ash CaCO3, pH, and Extractable Elements Using Principal Component Analysis. , 2017, , 319-334.		2

180 Mapping Ash CaCO3, pH, and Extractable Elements Using Principal Component Analysis. , 2017, , 319-334.

#	Article	IF	CITATIONS
181	Análisis de perfiles longitudinales de rÃos para la detección de anomalÃas geomorfológicas. Aplicación a un sector de la costa septentrional del Mar de Alborán (España). Anales De Geografia De La Universidad Complutense, 2018, 38, 161-194.	0.2	2
182	Soil Hydrology for a Sustainable Land Management: Theory and Practice. Water (Switzerland), 2020, 12, 1109.	2.7	2
183	Rainfall simulation experiments as a tool for process research in soil science, hydrology, and geomorphology. , 2021, , 395-418.		2
184	Evaluación del Ãndice de pobreza hÃdrica (WPI) en la cuenca de Borujerd-Dorood (Irán) para reforzar los planes de gestión del territorio. Pirineos, 0, 176, e064.	0.6	2
185	Los suelos de Casapalma (Valle del Guadalhorce, Málaga). Análisis edafogeográfico aplicado a la ordenación del territorio. Estudios Geograficos, 2016, 77, 275-310.	0.3	2
186	Estimación del efecto Venturi como factor desencadenante de la pluviometrÃa en la Sierra de Grazalema. Pirineos, 0, 172, 033.	0.6	2
187	Evaluación de los procesos superficiales de escorrentÃa en cárcavas originadas en olivares convencionales. Un apartado a tener en cuenta en la planificación territorial. Revista De Geografia Norte Grande, 2019, , 229-248.	0.2	2
188	Playing with water – An introduction to experimental hydrology. Forum Geografic, 2018, XVII, 56-65.	0.2	2
189	Effect of Standard Disk Plough on Soil Translocation in Sloping Sicilian Vineyards. Land, 2022, 11, 148.	2.9	2
190	Mapping Potential Toxic Elements in Agricultural and Natural Soils of the Piedemonte Llanero in Colombia. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	2
191	Ten Years of Air, Soil, and Water Research. Air, Soil and Water Research, 2019, 12, 117862211983412.	2.5	1
192	Land Management Impacts on Soil Water Erosion and Loss of Nutrients. Proceedings (mdpi), 2019, 30, .	0.2	1
193	Finding Possible Weakness in the Runoff Simulation Experiments to Assess Rill Erosion Changes without Non-Intermittent Surveying Capabilities. Sensors, 2020, 20, 6254.	3.8	1
194	Assessment of the nutritional value of Gundelia tournefortii during its growth stages as a key element in the Senowbar rangeland ecosystem, Northeast of Iran. International Journal of Environmental Science and Technology, 2021, 18, 1731-1738.	3.5	1
195	High-to-Low (Regional) Fertility Transitions in a Peripheral European Country: The Contribution of Exploratory Time Series Analysis. Data, 2021, 6, 19.	2.3	1
196	Are Cities Truly Dispersed? A Long-Term Analysis of Vertical Profile of Settlements in Athens' Metropolitan Region. Sustainability, 2021, 13, 3365.	3.2	1
197	Role and Concept of Rooftop Disconnection in Terms of Runoff Volume and Flood Peak Quantity. International Journal of Environmental Research, 0, , 1.	2.3	1
198	Understanding the effect of shifting cultivation practice (slash-burn-cultivation-abandonment) on soil physicochemical properties in the North-eastern Himalayan region. Investigaciones GeogrĂjficas, 2021, , 243.	0.5	1

#	Article	IF	CITATIONS
199	Soil Erosion as an Environmental Concern for Everyone?. Proceedings (mdpi), 2020, 30, .	0.2	1
200	Developing scoring functions to assess soil quality at a regional scale in rangelands of SW Spain. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	1.3	1
201	Stubble burning and wildfires in Turkey considering the Sustainable Development Goals of the United Nations. Eurasian Journal of Soil Science, 2022, 11, 66-76.	0.6	1
202	Relevance of Integrated Air, Soil and Water Research Studies for the New Millennia. Air, Soil and Water Research, 2022, 15, 117862212210862.	2.5	1
203	Transforming 2D Radar Remote Sensor Information from a UAV into a 3D World-View. Remote Sensing, 2022, 14, 1633.	4.0	1
204	Assessment of a new bio-organic remediation as a bio-fungicide in fusarium-infested soils of watermelon monoculture areas from China. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	3.4	0
205	Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere, 2019, 29, 258.	4.0	0
206	How Important Is the Number of Points and Plot Size for Estimating Soil Erosion in Vineyards?. Proceedings (mdpi), 2019, 30, .	0.2	0
207	The Use of Analysis of Weather Types to Complete the Studies of Soil Erosion in Vineyards and Abandoned Areas. Proceedings (mdpi), 2019, 30, .	0.2	0
208	Challenges and Opportunities Facing Light Pollution: Smart Light-Hub Interreg. Proceedings (mdpi), 2019, 30, 63.	0.2	0
209	A New Decade in <i>Air, Soil and Water Research</i> : New Challenges and Environmental Issues to Be Discussed. Air, Soil and Water Research, 2020, 13, 117862212091653.	2.5	0
210	Challenges to improve rainfall-runoff study on experimental field plots. , 2021, , 223-236.		0
211	Geomorphological precipitation as a key element in the modeling of the landscapes. , 2021, , 85-105.		0
212	Precipitation: a regional geographic topic with numerous challenges. , 2021, , 1-18.		0
213	Vineyards Assessed Under a Biophysical Approach: Findings From the Biohydrology and TERRAenVISION Meetings. Air, Soil and Water Research, 2021, 14, 117862212098581.	2.5	0
214	Soil and water losses along the cultivation cycle of onion in Irati, Brazil. Catena, 2021, 204, 105439.	5.0	0
215	Topographical features and soil erosion processes. , 2022, , 117-126.		0
216	2021: The New Normal and the Air, Soil and Water Research Perspective. Air, Soil and Water Research, 2021, 14, 117862212098831.	2.5	0

#	Article	IF	CITATIONS
217	La necesidad de considerar los riesgos climáticos en la introducción de cultivos tropicales en latitudes medias. El mango en el valle del Guadalhorce (Málaga). Investigaciones Geográficas, 2014, , 127.	0.5	0
218	Reseña de Key Concepts in Geomorphology. Cuadernos Geograficos, 2020, 60, 318-320.	0.5	0
219	Mediterranean Europe, a Fragile Landscape: Metropolitan Growth and Urban Sprawl. Springer Geography, 2022, , 75-103.	0.4	Ο
220	Preserving Land Quality in European Metropolis. Springer Geography, 2022, , 131-153.	0.4	0
221	Land Quality and Sustainable Urban Forms. Springer Geography, 2022, , .	0.4	0