Elmar J Prenner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4703830/publications.pdf

Version: 2024-02-01

46 papers 3,505 citations

304368

22

h-index

223531 46 g-index

46 all docs

46 docs citations

times ranked

46

5204 citing authors

#	Article	IF	CITATIONS
1	Lipid headgroup and side chain architecture determine manganese-induced dose dependent membrane rigidification and liposome size increase. European Biophysics Journal, 2022, 51, 205-223.	1.2	4
2	Vaping additives negatively impact the stability and lateral film organization of lung surfactant model systems. Nanomedicine, 2022, 17, 827-843.	1.7	9
3	Evaluation of Biopolymer Materials and Synthesis Techniques to Develop a Rod-Shaped Biopolymer Surrogate for Legionella pneumophila. Polymers, 2022, 14, 2571.	2.0	2
4	The degree and position of phosphorylation determine the impact of toxic and trace metals on phosphoinositide containing model membranes. BBA Advances, 2021, 1, 100021.	0.7	8
5	Benefits and Detriments of Gadolinium from Medical Advances to Health and Ecological Risks. Molecules, 2020, 25, 5762.	1.7	20
6	Mechanisms of Co, Ni, and Mn toxicity: From exposure and homeostasis to their interactions with and impact on lipids and biomembranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183250.	1.4	48
7	Differential impact of synthetic antitumor lipid drugs on the membrane organization of phosphatidic acid and diacylglycerol monolayers. Chemistry and Physics of Lipids, 2020, 229, 104896.	1.5	6
8	Inorganic mercury and cadmium induce rigidity in eukaryotic lipid extracts while mercury also ruptures red blood cells. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 710-717.	1.4	22
9	Cobalt and nickel affect the fluidity of negatively-charged biomimetic membranes. Chemistry and Physics of Lipids, 2018, 210, 28-37.	1.5	15
10	The effect of repeated lateral compression and expansions mimicking blinking on selected tear film polar lipid monofilms. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 319-330.	1.4	16
11	Preferential binding of Inorganic Mercury to specific lipid classes and its competition with Cadmium. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1211-1221.	1.4	16
12	Calorimetry Methods to Study Membrane Interactions and Perturbations Induced by Antimicrobial Host Defense Peptides. Methods in Molecular Biology, 2017, 1548, 119-140.	0.4	6
13	Applications of Brewster angle microscopy from biological materials to biological systems. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1749-1766.	1.4	61
14	Binding Affinity of Inorganic Mercury and Cadmium to Biomimetic Erythrocyte Membranes. Journal of Physical Chemistry B, 2016, 120, 12872-12882.	1.2	19
15	Inorganic cadmium affects the fluidity and size of phospholipid based liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3169-3181.	1.4	21
16	Biophysical characterization of monofilm model systems composed of selected tear film phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 403-414.	1.4	18
17	The structural and functional effects of Hg(II) and Cd(II) on lipid model systems and human erythrocytes: A review. Chemistry and Physics of Lipids, 2015, 193, 36-51.	1.5	36
18	Disruption of lipid domain organization in monolayers of complex yeast lipid extracts induced by the lysophosphatidylcholine analogue edelfosine in vivo. Chemistry and Physics of Lipids, 2015, 191, 153-162.	1.5	7

#	Article	IF	Citations
19	Secretory vesicle cholesterol: Correlating lipid domain organization and Ca2+ triggered fusion. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1165-1174.	1.4	10
20	Differential Interactions of Gelatin Nanoparticles with the Major Lipids of Model Lung Surfactant: Changes in the Lateral Membrane Organization. Journal of Physical Chemistry B, 2015, 119, 5356-5366.	1.2	18
21	Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids and Surfaces B: Biointerfaces, 2014, 118, 154-163.	2.5	145
22	Visualizing a multidrug resistance protein, EmrE, with major bacterial lipids using Brewster angle microscopy. Chemistry and Physics of Lipids, 2013, 167-168, 33-42.	1.5	18
23	Hg- and Cd-induced modulation of lipid packing and monolayer fluidity in biomimetic erythrocyte model systems. Chemistry and Physics of Lipids, 2013, 170-171, 46-54.	1.5	19
24	Real-time imaging of lipid domains and distinct coexisting membrane protein clusters. Chemistry and Physics of Lipids, 2012, 165, 216-224.	1.5	16
25	Apolipoprotein-induced conversion of phosphatidylcholine bilayer vesicles into nanodisks. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 606-613.	1.4	25
26	Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nature Medicine, 2011, 17, 479-487.	15.2	361
27	Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. Journal of Pharmacy and Bioallied Sciences, 2011, 3, 39.	0.2	276
28	Pulmonary Toxicity of Polysorbate-80-coated Inhalable Nanoparticles; In vitro and In vivo Evaluation. AAPS Journal, 2010, 12, 294-299.	2.2	27
29	Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chemistry and Physics of Lipids, 2010, 163, 82-93.	1.5	102
30	Real-Time Imaging of Interactions Between Dipalmitoylphosphatidylcholine Monolayers and Gelatin Based Nanoparticles Using Brewster Angle Microscopy. Journal of Biomedical Nanotechnology, 2010, 6, 145-152.	0.5	15
31	Hg2+ and Cd2+ interact differently with biomimetic erythrocyte membranes. BioMetals, 2009, 22, 261-274.	1.8	19
32	Apolipophorin III interaction with model membranes composed of phosphatidylcholine and sphingomyelin using differential scanning calorimetry. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2160-2168.	1.4	9
33	Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1004-1014.	1.4	76
34	Nanoparticles: Characteristics, Mechanisms of Action, and Toxicity in Pulmonary Drug Deliveryâ€"A Review. Journal of Biomedical Nanotechnology, 2007, 3, 107-119.	0.5	99
35	Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2447-2458.	1.4	56
36	Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides. Journal of Peptide Science, 2007, 13 , $37-43$.	0.8	95

#	Article	IF	CITATIONS
37	Imaging of the domain organization in sphingomyelin and phosphatidylcholine monolayers. Chemistry and Physics of Lipids, 2007, 145, 106-118.	1.5	58
38	The Seleno Bis(S-glutathionyl) Arsinium Ion Is Assembled in Erythrocyte Lysate. Chemical Research in Toxicology, 2006, 19, 601-607.	1.7	62
39	Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1184-1202.	1.4	831
40	Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1596-1608.	1.4	67
41	Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1417, 211-223.	1.4	114
42	Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1462, 141-156.	1.4	247
43	The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1462, 201-221.	1.4	196
44	Fourier Transform Infrared Spectroscopic Studies of the Interaction of the Antimicrobial Peptide Gramicidin S with Lipid Micelles and with Lipid Monolayer and Bilayer Membranesâ€. Biochemistry, 1999, 38, 15193-15203.	1.2	56
45	Nonlamellar Phases Induced by the Interaction of Gramicidin S with Lipid Bilayers. A Possible Relationship to Membrane-Disrupting Activityâ€. Biochemistry, 1997, 36, 7906-7916.	1.2	135
46	Phase behavior of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1192, 167-176.	1.4	19