Sarah J Gurr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4703726/publications.pdf

Version: 2024-02-01

37 8,025 29 37
papers citations h-index g-index

42 42 42 10337 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012, 484, 186-194.	27.8	2,478
2	Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360, 739-742.	12.6	957
3	Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 2013, 3, 985-988.	18.8	679
4	Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology, 2009, 27, 141-150.	9.3	439
5	The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genetics and Biology, 2015, 79, 3-7.	2.1	393
6	The global spread of crop pests and pathogens. Global Ecology and Biogeography, 2014, 23, 1398-1407.	5.8	367
7	Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 2022, 20, 557-571.	28.6	311
8	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	4.1	275
9	Threats to global food security from emerging fungal and oomycete crop pathogens. Nature Food, 2020, 1, 332-342.	14.0	234
10	<i>Magnaporthe grisea</i> Cutinase2 Mediates Appressorium Differentiation and Host Penetration and Is Required for Full Virulence. Plant Cell, 2007, 19, 2674-2689.	6.6	191
11	Plant pathogen infection risk tracks global crop yields under climate change. Nature Climate Change, 2021, 11, 710-715.	18.8	177
12	Engineering plants with increased disease resistance: what are we going to express?. Trends in Biotechnology, 2005, 23, 275-282.	9.3	156
13	Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genetics and Biology, 2015, 74, 62-64.	2.1	156
14	The Role of the Fungal Cell Wall in the Infection of Plants. Trends in Microbiology, 2017, 25, 957-967.	7.7	146
15	Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160332.	4.0	103
16	The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f.sp.hordei. Physiological and Molecular Plant Pathology, 1999, 55, 175-182.	2.5	102
17	A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici. Fungal Genetics and Biology, 2017, 106, 51-60.	2.1	78
18	Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytologist, 2014, 202, 901-910.	7.3	76

#	Article	IF	CITATIONS
19	Nitric oxide generated by the rice blast fungus <i>Magnaporthe oryzae</i> drives plant infection. New Phytologist, 2013, 197, 207-222.	7.3	75
20	Robust antiâ€oxidant defences in the rice blast fungus <i>Magnaporthe oryzae</i> confer tolerance to the host oxidative burst. New Phytologist, 2014, 201, 556-573.	7.3	69
21	Chitosan Mediates Germling Adhesion in Magnaporthe oryzae and Is Required for Surface Sensing and Germling Morphogenesis. PLoS Pathogens, 2016, 12, e1005703.	4.7	59
22	Modelling coffee leaf rust risk in Colombia with climate reanalysis data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150458.	4.0	56
23	Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nature Microbiology, 2016, 1, 16149.	13.3	56
24	The βâ€1,3â€glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressoriumâ€mediated plant infection. Cellular Microbiology, 2017, 19, e12659.	2.1	51
25	Fungi, fungicide discovery and global food security. Fungal Genetics and Biology, 2020, 144, 103476.	2.1	48
26	Geometry and evolution of the ecological niche in plant-associated microbes. Nature Communications, 2020, 11, 2955.	12.8	39
27	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. Microbiology Spectrum, 2017, 5, .	3.0	38
28	Many unreported crop pests and pathogens are probably already present. Global Change Biology, 2019, 25, 2703-2713.	9.5	38
29	NOXious gases and the unpredictability of emerging plant pathogens under climate change. BMC Biology, 2017, 15, 36.	3.8	32
30	A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nature Communications, 2020, 11, 1608.	12.8	31
31	Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2016, 11, e0160637.	2.5	30
32	Investigating chitin deacetylation and chitosan hydrolysis during vegetative growth in <i>Magnaporthe oryzae</i> . Cellular Microbiology, 2017, 19, e12743.	2.1	27
33	Asynchronous development of Zymoseptoria tritici infection in wheat. Fungal Genetics and Biology, 2021, 146, 103504.	2.1	22
34	A new mechanistic model of weather-dependent Septoria tritici blotch disease risk. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180266.	4.0	12
35	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. , 0, , 787-809.		6
36	Rapid loss of virulence during submergence of Z. tritici asexual spores. Fungal Genetics and Biology, 2019, 128, 14-19.	2.1	2

#	Article	IF	CITATIONS
37	Conditional promoters to investigate gene function during wheat infection by Zymoseptoria tritici. Fungal Genetics and Biology, 2021, 146, 103487.	2.1	1