
Svetlana Mastitskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4702882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simplifying the hardware requirements for fast neural EIT of peripheral nerves. Physiological Measurement, 2022, 43, 015004.	2.1	2
2	Overcoming temporal dispersion for measurement of activity-related impedance changes in unmyelinated nerves. Journal of Neural Engineering, 2022, , .	3.5	0
3	Fascicular Organisation and Neuroanatomy of the Porcine and Human Vagus Nerves: Allowing for Spatially Selective Vagus Nerve Stimulation. FASEB Journal, 2022, 36, .	0.5	1
4	Selective optogenetic stimulation of efferent fibers in the vagus nerve of a large mammal. Brain Stimulation, 2021, 14, 88-96.	1.6	24
5	A circadian clock in the sinus node mediates day-night rhythms in Hcn4 and heart rate. Heart Rhythm, 2021, 18, 801-810.	0.7	46
6	Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients. Nature Communications, 2021, 12, 1119.	12.8	26
7	Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Frontiers in Neuroscience, 2021, 15, 667036.	2.8	23
8	Selective Neuromodulation of the Vagus Nerve. Frontiers in Neuroscience, 2021, 15, 685872.	2.8	46
9	Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays. Journal of Neuroscience Methods, 2021, 358, 109140.	2.5	13
10	Optogenetic Stimulation of Vagal Efferent Activity Preserves Left Ventricular Function in Experimental HeartÂFailure. JACC Basic To Translational Science, 2020, 5, 799-810.	4.1	27
11	Imaging fascicular organization of rat sciatic nerves with fast neural electrical impedance tomography. Nature Communications, 2020, 11, 6241.	12.8	24
12	MicroCT optimisation for imaging fascicular anatomy in peripheral nerves. Journal of Neuroscience Methods, 2020, 338, 108652.	2.5	29
13	Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract. Journal of Neuroscience, 2020, 40, 3052-3062.	3.6	20
14	SPARC: Method for Overcoming Temporal Dispersion in Unmyelinated Nerves for Imaging C Fibres with Electrical Impedance Tomography (EIT). FASEB Journal, 2020, 34, 1-1.	0.5	2
15	Determining the Fascicular Anatomy of the Porcine Vagus Nerve with MicroCT. FASEB Journal, 2020, 34, 1-1.	0.5	1
16	Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: Neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve. Journal of Neuroscience Methods, 2019, 325, 108325.	2.5	61
17	Optimization of the electrode drive pattern for imaging fascicular compound action potentials in peripheral nerve with fast neural electrical impedance tomography. Physiological Measurement, 2019, 40, 115007.	2.1	16
18	Impaired brain glymphatic flow in experimental hepatic encephalopathy. Journal of Hepatology, 2019, 70. 40-49.	3.7	55

Svetlana Mastitskaya

#	Article	IF	CITATIONS
19	Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia, 2018, 66, 1185-1199.	4.9	86
20	Modulation of Cardiac Ventricular Excitability by GLP-1 (Glucagon-Like Peptide-1). Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006740.	4.8	20
21	Reply: Glucagon-like peptide-1 mediates cardioprotection by remote ischaemic conditioning. Cardiovascular Research, 2017, 113, 13.2-14.	3.8	5
22	Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. ELife, 2017, 6, .	6.0	106
23	Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovascular Research, 2016, 112, 669-676.	3.8	81
24	Identifying the Source of a Humoral Factor of Remote (Pre)Conditioning Cardioprotection. PLoS ONE, 2016, 11, e0150108.	2.5	50
25	Purinergic signalling in the rostral ventro-lateral medulla controls sympathetic drive and contributes to the progression of heart failure following myocardial infarction in rats. Basic Research in Cardiology, 2013, 108, 317.	5.9	71
26	Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovascular Research, 2012, 95, 487-494.	3.8	187
27	Remote ischaemic pre―and delayed postconditioning – similar degree of cardioprotection but distinct mechanisms. Experimental Physiology, 2012, 97, 908-917.	2.0	128
28	Human spongiosa mesenchymal stem cells fail to generate cardiomyocytes in vitro. Journal of Negative Results in BioMedicine, 2009, 8, 11.	1.4	7
29	Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials, 2008, 29, 302-313.	11.4	157