List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4702654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved interface of ZnO/CH ₃ NH ₃ PbI ₃ by a dynamic spin-coating process for efficient perovskite solar cells. RSC Advances, 2017, 7, 19030-19038.	1.7	62
2	Golden Bristlegrassâ€Like Hierarchical Graphene Nanofibers Entangled with Nâ€Doped CNTs Containing CoSe ₂ Nanocrystals at Each Node as Anodes for Highâ€Rate Sodiumâ€Ion Batteries. Small, 2020, 16, e2003391.	5.2	58
3	Effects of ITO precursor thickness on transparent conductive Al doped ZnO film for solar cell applications. Solar Energy Materials and Solar Cells, 2011, 95, 138-141.	3.0	57
4	Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: A review. Solar Energy Materials and Solar Cells, 2020, 204, 110212.	3.0	56
5	Two-Dimensional WSe ₂ /MoS ₂ p–n Heterojunction-Based Transparent Photovoltaic Cell and Its Performance Enhancement by Fluoropolymer Passivation. ACS Applied Materials & Interfaces, 2018, 10, 35972-35977.	4.0	51
6	Hierarchically porous nanofibers comprising multiple core–shell Co3O4@graphitic carbon nanoparticles grafted within N-doped CNTs as functional interlayers for excellent Li–S batteries. Chemical Engineering Journal, 2021, 426, 130805.	6.6	49
7	Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine. ACS Applied Materials & Interfaces, 2017, 9, 22432-22439.	4.0	47
8	Hierarchically Wellâ€Developed Porous Graphene Nanofibers Comprising Nâ€Doped Graphitic Câ€Coated Cobalt Oxide Hollow Nanospheres As Anodes for Highâ€Rate Liâ€Ion Batteries. Small, 2020, 16, e2002213.	5.2	46
9	Two-step growth of CsPbI _{3â~x} Br _x films employing dynamic CsBr treatment: toward all-inorganic perovskite photovoltaics with enhanced stability. Journal of Materials Chemistry A, 2019, 7, 18488-18498.	5.2	43
10	Boosting the Conversion Efficiency Over 20% in MAPbI ₃ Perovskite Planar Solar Cells by Employing a Solution-Processed Aluminum-Doped Nickel Oxide Hole Collector. ACS Applied Materials & Interfaces, 2020, 12, 22958-22970.	4.0	42
11	Multi-channel-contained few-layered MoSe2 nanosheet/N-doped carbon hybrid nanofibers prepared using diethylenetriamine as anodes for high-performance sodium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 75, 100-107.	2.9	39
12	Water-resistant PEDOT:PSS hole transport layers by incorporating a photo-crosslinking agent for high-performance perovskite and polymer solar cells. Nanoscale, 2018, 10, 13187-13193.	2.8	37
13	Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers. Food Hydrocolloids, 2021, 111, 106259.	5.6	34
14	Fibrous network of highly integrated carbon nanotubes/MoO3 composite bundles anchored with MoO3 nanoplates for superior lithium ion battery anodes. Journal of Industrial and Engineering Chemistry, 2020, 83, 438-448.	2.9	33
15	Stretchable electrolytes for stretchable/flexible energy storage systems – Recent developments. Energy Storage Materials, 2020, 28, 315-324.	9.5	27
16	Porous nitrogen-doped graphene nanofibers comprising metal organic framework-derived hollow and ultrafine layered double metal oxide nanocrystals as high-performance anodes for lithium-ion batteries. Journal of Power Sources, 2022, 523, 231030.	4.0	26
17	Al2O3 antireflection layer between glass and transparent conducting oxide for enhanced light trapping in microcrystalline silicon thin film solar cells. Solar Energy Materials and Solar Cells, 2012, 101, 22-25.	3.0	25
18	Inorganic narrow bandgap CsPb0.4Sn0.6l2.4Br0.6 perovskite solar cells with exceptional efficiency. Nano Energy, 2020, 77, 105309.	8.2	25

#	Article	IF	CITATIONS
19	Improving the performance and reliability of inverted planar perovskite solar cells with a carbon nanotubes/PEDOT:PSS hybrid hole collector. Nanoscale, 2017, 9, 9754-9761.	2.8	24
20	Enhanced Device Performance with Passivation of the TiO ₂ Surface Using a Carboxylic Acid Fullerene Monolayer for a SnPb Perovskite Solar Cell with a Normal Planar Structure. ACS Applied Materials & Interfaces, 2020, 12, 17776-17782.	4.0	24
21	Effect of textured glass substrates coated with LPCVD-deposited SnO :F on amorphous silicon solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 126-133.	3.0	23
22	Self-supported hierarchically porous 3D carbon nanofiber network comprising Ni/Co/NiCo2O4 nanocrystals and hollow N-doped C nanocages as sulfur host for highly reversible Li–S batteries. Chemical Engineering Journal, 2022, 446, 137141.	6.6	23
23	Highly Transparent and High Haze Bilayer Al-Doped ZnO Thin Film Employing Oxygen-Controlled Seed Layer. Japanese Journal of Applied Physics, 2010, 49, 031101.	0.8	22
24	Carbon nanotubes embedded poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid hole collector for inverted planar perovskite solar cells. Journal of Power Sources, 2019, 435, 226765.	4.0	22
25	Fabrication of nickel oxide composites with carbon nanotubes for enhanced charge transport in planar perovskite solar cells. Applied Surface Science, 2020, 516, 146116.	3.1	22
26	Mixed-halide Pb-Sn binary perovskite films with various Sn-content for Pb-reduced solar cells. Materials Letters, 2018, 227, 311-314.	1.3	20
27	Freestanding flexible multilayered Sulfur–Carbon nanotubes for Lithium–Sulfur battery cathodes. Energy, 2020, 212, 118779.	4.5	20
28	Dynamic casting in combination with ramped annealing process for implementation of inverted planar Ag3Bil6 rudorffite solar cells. Journal of Power Sources, 2020, 453, 227903.	4.0	20
29	Highly Efficient and Reliable Semitransparent Perovskite Solar Cells via Top Electrode Engineering. Advanced Functional Materials, 2022, 32, .	7.8	20
30	Highly conductive GaN anti-reflection layer at transparent conducting oxide/Si interface for silicon thin film solar cells. Solar Energy Materials and Solar Cells, 2012, 105, 317-321.	3.0	19
31	Solution-processed nickel oxide hole transport layer for highly efficient perovskite-based photovoltaics. Ceramics International, 2018, 44, 9347-9352.	2.3	19
32	Effect of Ga Doping on Transparent and Conductive Al-Doped ZnO Films Prepared Using Magnetron Cosputtering. Japanese Journal of Applied Physics, 2010, 49, 125801.	0.8	18
33	Characterization of fibrous gel polymer electrolyte for lithium polymer batteries with enhanced electrochemical properties. Journal of Electroanalytical Chemistry, 2016, 775, 37-42.	1.9	18
34	PCBM-blended chlorobenzene hybrid anti-solvent engineering for efficient planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10143-10151.	2.7	18
35	Sequentially Vapor-Grown Hybrid Perovskite for Planar Heterojunction Solar Cells. Nanoscale Research Letters, 2018, 13, 9.	3.1	18
36	Improving of the Photovoltaic Characteristics of Dye-Sensitized Solar Cells Using a Photoelectrode with Electrospun Porous TiO2 Nanofibers. Nanomaterials, 2019, 9, 95.	1.9	18

#	Article	IF	CITATIONS
37	Boron and Aluminum Codoped ZnO Transparent Conducting Films with High Electrical Stability. Journal of the Electrochemical Society, 2011, 159, H61-H65.	1.3	17
38	Phenylethylammonium-formamidinium-methylammonium quasi-2D/3D tin wide-bandgap perovskite solar cell with improved efficiency and stability. Chemical Engineering Journal, 2022, 446, 137388.	6.6	17
39	Cathode of Zn-Ni Layered Double Hydroxide Nanosheet Arrays Wrapped with a Porous NiMoS _{<i>x</i>} Shell and Anode of 3D Hierarchical Nitrogen-Doped Carbon for High-Performance Asymmetric Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9166-9177.	2.5	15
40	High-Performance Amorphous Silicon Thin Film Solar Cells Prepared at 100°C: Toward Flexible Building-Integrated Photovoltaics. Electronic Materials Letters, 2019, 15, 623-629.	1.0	14
41	Growth Temperature Influence on Atomic-Layer-Deposited In2O3 Thin Films and Their Application in Inorganic Perovskite Solar Cells. Nanomaterials, 2021, 11, 2047.	1.9	13
42	Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review. Nano Research, 2022, 15, 6449-6465.	5.8	12
43	An efficient and thermally stable interconnecting layer for tandem organic solar cells. Solar Energy, 2017, 155, 552-560.	2.9	11
44	Wideâ€bandgap pâ€ŧype microcrystalline silicon oxycarbide using additional trimethylboron for silicon heterojunction solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 384-389.	4.4	10
45	All p-i-n hydrogenated amorphous silicon oxide thin film solar cells for semi-transparent solar cells. Thin Solid Films, 2018, 662, 97-102.	0.8	10
46	P/i interfacial engineering in semi-transparent silicon thin film solar cells for fabrication at a low temperature of 150â€Â°C. Current Applied Physics, 2019, 19, 1120-1126.	1.1	10
47	Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries. Electrochimica Acta, 2021, 365, 137349.	2.6	10
48	Novel application of MgF ₂ as a back reflector in a-SiO <i>_x</i> :H thin-film solar cells. Applied Physics Express, 2014, 7, 082302.	1.1	9
49	InGaP//GaAs//câ€5i 3â€junction solar cells employing spectrumâ€splitting system. Progress in Photovoltaics: Research and Applications, 2016, 24, 1016-1023.	4.4	9
50	Perovskite/polyethylene oxide composites: Toward perovskite solar cells without anti-solvent treatment. Ceramics International, 2019, 45, 23399-23405.	2.3	9
51	Enhanced Electro-Optical Performance of Inorganic Perovskite/a-InGaZnO Phototransistors Enabled by Sn–Pb Binary Incorporation with a Selective Photonic Deactivation. ACS Applied Materials & Interfaces, 2020, 12, 58038-58048.	4.0	9
52	Improving photovoltaic performance of CsPbBr3 perovskite solar cells by a solvent-assisted rinsing step. Electrochimica Acta, 2021, 368, 137539.	2.6	9
53	Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system. Journal of Materials Science and Technology, 2019, 35, 1563-1569.	5.6	8
54	Low-Temperature Deposited Highly Flexible In–Zn–V–O Transparent Conductive Electrode for Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 234-248.	2.5	8

#	Article	IF	CITATIONS
55	Mixed Solvent Engineering for Morphology Optimization of the Electron Transport Layer in Perovskite Photovoltaics. ACS Applied Energy Materials, 2022, 5, 387-396.	2.5	8
56	Camphene-derived hollow and porous nanofibers decorated with hollow NiO nanospheres and graphitic carbon as anodes for efficient lithium-ion storage. Journal of Industrial and Engineering Chemistry, 2022, 114, 276-287.	2.9	8
57	Improving inorganic perovskite photovoltaic performance via organic cation addition for efficient solar energy utilization. Energy, 2022, 257, 124640.	4.5	8
58	Development of wide band gap p-a-SiOxCy:H using additional trimethylboron as carbon source gas. Electronic Materials Letters, 2016, 12, 462-467.	1.0	7
59	Methylammonium lead mixed halide films processed with a new composition for planar perovskite solar cells. Applied Surface Science, 2018, 427, 421-426.	3.1	6
60	The effect of substrate temperature on optoelectronic characteristics of surface-textured ZnO:Al films for micromorph silicon tandem solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	5
61	Low-temperature-processed a-SiO <i>_x</i> :H/a-Si:H tandem cells for full spectrum solar cells. Japanese Journal of Applied Physics, 2015, 54, 08KB02.	0.8	5
62	InGaP//GaAs//CIGS 3â€junction spectrumâ€splitting solar cells with lowâ€concentration ratio. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1535-1540.	0.8	5
63	Effects of helium concentration on microcrystalline silicon thin film solar cells deposited by atmospheric-pressure plasma deposition at 13.3â€kPa. Thin Solid Films, 2018, 650, 32-36.	0.8	5
64	Improved Stability in Perovskite Solar Cells by Solution-Processed Fluorocarbon Passivation. IEEE Electron Device Letters, 2018, 39, 843-846.	2.2	5
65	Semitransparent perovskite solar cells with exceptional efficiency and transmittance. Applied Physics Express, 2021, 14, 126504.	1.1	5
66	A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>n</i> -butylammonium cation-capped Pb–Sn perovskites. Journal of Materials Chemistry A, 2021, 9, 27541-27550.	5.2	5
67	Enhanced dissociation of excitons and charge transfer in organic solar cells of polymer:fullerene blends with molecular BPFZn doping. International Journal of Energy Research, 2022, 46, 8716-8725.	2.2	5
68	Efficient light incoupling into silicon thin-film solar cells by anti-reflecting MgO/high-compact-AZO with air-side textured glass. Journal Physics D: Applied Physics, 2013, 46, 485107.	1.3	4
69	Light management of a-SiOx:H thin film solar cells with hydrogen-reduced p+ buffer at TiO2/p-layer interface. Solar Energy Materials and Solar Cells, 2015, 143, 296-301.	3.0	4
70	Performance improvement of amorphous silicon solar cell by SiOx:H based multiple antireflection coatings. Thin Solid Films, 2016, 616, 461-465.	0.8	4
71	Multi-Scalable Grain Growth via Phenyl-C60-Butyric Acid Methyl Ester Molecular Aggregation in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5985-5994.	2.5	4
72	Effect of TiO ₂ Antireflection Layer with Various Conductivities and Refractive Indices on Performance of Amorphous Silicon/Amorphous Silicon Germanium Tandem Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NB10.	0.8	4

#	Article	IF	CITATIONS
73	Effect of TiO ₂ Antireflection Layer with Various Conductivities and Refractive Indices on Performance of Amorphous Silicon/Amorphous Silicon Germanium Tandem Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NB10.	0.8	3
74	Highly transparent Zn1â^'xMgxO/ITO multilayer for window of thin film solar cells. Current Applied Physics, 2015, 15, 1022-1026.	1.1	3
75	Numerical simulation of p-type diamond Schottky barrier diodes for high breakdown voltage. Japanese Journal of Applied Physics, 2017, 56, 06GE09.	0.8	3
76	Room-Temperature Solution-Processed 0D/1D Bilayer Electrodes for Translucent CsPbBr3 Perovskite Photovoltaics. Nanomaterials, 2021, 11, 1489.	1.9	3
77	P-25: Nanocrystalline Silicon Thin Film Transistor Fabricated without any Substrate Heating for a Flexible Display. Digest of Technical Papers SID International Symposium, 2008, 39, 1262.	0.1	2
78	Highly Transparent and High Haze ZnO:Al film For Front TCO of a-Si:H and μc-Si:H Solar Cells by Controlling Oxygen Flow. Materials Research Society Symposia Proceedings, 2009, 1153, 1.	0.1	2
79	Pentacene-assisted planarization of photo-active layers for high performance tandem organic photovoltaics. Solar Energy, 2018, 163, 434-442.	2.9	2
80	Amorphous solar cell on multilayer of SnO ₂ /ZnO TCO substrate for full spectrum splitting solar cell application. Canadian Journal of Physics, 2014, 92, 917-919.	0.4	1
81	Progress in a-SiOx:H thin film solar cells with patterned MgF2 dielectric for top cell of multi-junction system. Electronic Materials Letters, 2016, 12, 451-455.	1.0	1
82	Influence of an Amide-Functionalized Monomeric Unit on the Morphology and Electronic Properties of Non-Fullerene Polymer Solar Cells. International Journal of Precision Engineering and Manufacturing - Green Technology, 0, , 1.	2.7	1
83	The tin(<scp>ii</scp>) precursor is an active site to determine the crystal framework in CsSnl ₃ perovskite. Journal of Materials Chemistry A, 2022, 10, 4782-4790.	5.2	1
84	Stretchable self-charging energy integrated device of high storage efficiency. Journal of Power Sources, 2022, 525, 231079.	4.0	1
85	The Positive Gate Bias Annealing Method for the Suppression of a Leakage Current in the SPC-Si TFT on a Glass Substrate. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	0
86	Pâ€26: Thermally Annealed Asymmetricâ€Offset Polycrystalline Thin Film Transistor with Low Leakage. Digest of Technical Papers SID International Symposium, 2008, 39, 1266-1269.	0.1	0
87	Effect of boron-doping on transparent conducting Al doped ZnO films for thin film solar cells. , 2010, , .		0
88	Surface Analysis of Dielectric Thin Films by Contact Angle Measurements. Science of Advanced Materials, 2018, 10, 1310-1314.	0.1	0
89	Air-Fabricated Organic/Perovskite Tandem Solar Cells with Less Hysteresis. , 0, , .		0