
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4702343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shock-Wave Phenomena and the Properties of Condensed Matter. , 2004, , .		231
2	Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. Journal of Applied Physics, 2001, 90, 136-143.	1.1	193
3	Spall fracture properties of aluminum and magnesium at high temperatures. Journal of Applied Physics, 1996, 79, 8310-8317.	1.1	172
4	Title is missing!. Physics-Uspekhi, 2007, 50, 771.	0.8	151
5	Spall strength of molybdenum single crystals. Journal of Applied Physics, 1993, 74, 7162-7165.	1.1	86
6	Shock response of magnesium single crystals at normal and elevated temperatures. Journal of Applied Physics, 2014, 116, .	1.1	85
7	Unusual plasticity and strength of metals at ultra-short load durations. Physics-Uspekhi, 2017, 60, 490-508.	0.8	67
8	Transformation of shock compression pulses in glass due to the failure wave phenomena. Journal of Applied Physics, 2002, 92, 5045-5052.	1.1	53
9	Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16–86 GPa. Journal of Applied Physics, 2009, 106, 043524.	1.1	53
10	Thermal "softening―and "hardening―of titanium and its alloy at high strain rates of shock-wave deforming. Physics of the Solid State, 2003, 45, 656-661.	0.2	49
11	Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures. Physics of the Solid State, 2012, 54, 790-797.	0.2	47
12	Dynamic strength of tin and lead melts. JETP Letters, 2015, 102, 548-551.	0.4	45
13	Shock-wave compression and tension of solids at elevated temperatures: superheated crystal states, pre-melting, and anomalous growth of the yield strength. Journal of Physics Condensed Matter, 2004, 16, S1007-S1016.	0.7	43
14	Resistance of zinc crystals to shock deformation and fracture at elevated temperatures. Physics of the Solid State, 1998, 40, 1676-1680.	0.2	37
15	Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures. International Journal of Impact Engineering, 2001, 25, 631-639.	2.4	37
16	Deformation resistance and fracture of iron over a wide strain rate range. Physics of the Solid State, 2014, 56, 1569-1573.	0.2	34
17	Spall fracture and twinning in laser shock-loaded single-crystal magnesium. Journal of Applied Physics, 2017, 121, .	1.1	34
18	High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading. Physics of the Solid State, 2012, 54, 1079-1085.	0.2	32

#	Article	IF	CITATIONS
19	Response of high-purity titanium to high-pressure impulsive loading. High Pressure Research, 1995, 13, 367-376.	0.4	29
20	A study of the failure wave phenomenon in glasses compressed at different levels. Journal of Applied Physics, 2005, 98, 113523.	1.1	28
21	Resistance to deformation and fracture of aluminum AD1 under shock-wave loading at temperatures of 20 and 600°C. Physics of the Solid State, 2010, 52, 2369-2375.	0.2	27
22	Rate and temperature dependences of the yield stress of commercial titanium under conditions of shock-wave loading. Journal of Applied Physics, 2016, 119, .	1.1	27
23	Submicrosecond strength of ultrafine-grained materials. Mechanics of Solids, 2010, 45, 624-632.	0.3	24
24	Spallations near the ultimate strength of solids. AIP Conference Proceedings, 1994, , .	0.3	23
25	Resistance of submicrocrystalline aluminum alloys to high-rate deformation and fracture after dynamic channel angular pressing. Physics of Metals and Metallography, 2015, 116, 519-526.	0.3	23
26	Effects of temperature on the flow stress of aluminum in shock waves and rarefaction waves. Journal of Applied Physics, 2020, 127, .	1.1	22
27	Influence of the load conditions on the failure wave in glasses. High Pressure Research, 1998, 16, 27-44.	0.4	21
28	Behavior of the nickel-titanium alloys with the shape memory effect under conditions of shock wave loading. Physics of the Solid State, 2011, 53, 824-829.	0.2	21
29	Anomalies in the temperature dependences of the bulk and shear strength of aluminum single crystals in the submicrosecond range. Physics of the Solid State, 2001, 43, 871-877.	0.2	20
30	Submicrosecond strength of the D16T aluminum alloy at room and elevated temperatures. Physics of the Solid State, 2008, 50, 839-843.	0.2	20
31	Submicrosecond polymorphic transformations accompanying shock compression of graphite. High Temperature, 2010, 48, 806-814.	0.1	20
32	Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions. Physics of the Solid State, 2015, 57, 337-343.	0.2	20
33	Effects of temperature and strain on the resistance to high-rate deformation of copper in shock waves. Journal of Applied Physics, 2020, 128, .	1.1	20
34	Dynamic strength of aluminum single crystals at melting. Applied Physics Letters, 2000, 76, 3230-3232.	1.5	19
35	Effect of structural factors on submicrosecond strength of D16T aluminum alloy. Technical Physics, 2008, 53, 1441-1446.	0.2	19
36	Iron at high negative pressures. JETP Letters, 2004, 80, 348-350.	0.4	18

#	Article	IF	CITATIONS
37	Hugoniot Elastic Limit and Spall Strength of Aluminum and Copper Single Crystals over a Wide Range of Strain Rates and Temperatures. AIP Conference Proceedings, 2002, , .	0.3	17
38	The spall strength of metals at elevated temperatures. AIP Conference Proceedings, 1996, , .	0.3	15
39	Effect of Preliminary Strain Hardening on the Flow Stress of Titanium and a Titanium Alloy during Shock Compression. Physics of the Solid State, 2005, 47, 663.	0.2	15
40	The spall strength and Hugoniot elastic limit of tantalum with various grain size. AIP Conference Proceedings, 2012, , .	0.3	15
41	Stress relaxation in vanadium under shock and shockless dynamic compression. Journal of Applied Physics, 2015, 118, 045901.	1.1	15
42	Influence of impurities on the resistance to spall fracture of aluminum near the melting temperature. International Journal of Fracture, 2016, 197, 185-188.	1.1	15
43	Kinetics of spallation rupture in the aluminum alloy AMg6M. Journal of Applied Mechanics and Technical Physics, 1985, 25, 707-711.	0.1	14
44	Evolution of shock waves in SiC ceramic. Technical Physics, 2013, 58, 973-977.	0.2	14
45	Peculiarities of the elastic-plastic transition and failure in polycrystalline vanadium under shock-wave loading conditions. Technical Physics Letters, 2015, 41, 579-582.	0.2	14
46	Mechanical Properties of the Al–Zn–Mg–Fe–Ni Alloy of Eutectic Type at Different Strain Rates. Physics of Metals and Metallography, 2019, 120, 1221-1227.	0.3	14
47	Evaluation of glycerol viscosity through the width of a weak shock wave. High Temperature, 2017, 55, 365-369.	0.1	13
48	The Influence of the Cobalt Content on the Strength Properties of Tungsten Carbide Ceramics under Dynamic Loads. Technical Physics, 2018, 63, 357-362.	0.2	13
49	Stepwise shock compression of aluminum at room and elevated temperatures. Journal of Applied Physics, 2019, 126, .	1.1	13
50	Large Tensions and Strength of Iron in Different Structure States. AIP Conference Proceedings, 2006, ,	0.3	12
51	Hydrodynamic proton beam-target interaction experiments using an improved line-imaging velocimeter. AIP Conference Proceedings, 1996, , .	0.3	11
52	Strength and failure of LK7 borosilicate glass under shock compression. Technical Physics, 2010, 55, 839-843.	0.2	11
53	Entropy-dominated dissipation in sapphire shock-compressed up to 400 GPa (4 Mbar). Journal of Physics: Conference Series, 2010, 215, 012148.	0.3	11
54	Mechanical properties of grade M1 copper before and after shock compression in a wide range of loading durations. Physics of Metals and Metallography, 2011, 111, 197-206.	0.3	11

#	Article	IF	CITATIONS
55	The Formation of Elastoplastic Fronts and Spall Fracture in AMg6 Alloy under Shock-Wave Loading. Technical Physics Letters, 2018, 44, 823-826.	0.2	11
56	Quasi-Static and Plate Impact Loading of Cast Magnesium Alloy ML5 Reinforced with Aluminum Nitride Nanoparticles. Metals, 2019, 9, 715.	1.0	11
57	Synergetic effect of fullerene and graphene oxide nanoparticles on mechanical characteristics of cross-linked polyurethanes under static and dynamic loading. Journal of Composite Materials, 2019, 53, 3797-3805.	1.2	11
58	Dynamic Strength of VT6 Titanium Alloy Manufactured by Laser Metal Deposition. Physical Mesomechanics, 2022, 25, 26-32.	1.0	11
59	Method of measurement of the dynamic strength of concrete under explosive loading. International Journal of Fracture, 2018, 209, 109-115.	1.1	10
60	Effect of Small Preliminary Deformation on the Evolution of Elastoplastic Waves of Shock Compression in Annealed VT1-0 Titanium. Journal of Experimental and Theoretical Physics, 2018, 127, 337-341.	0.2	10
61	Hypervelocity launching and impact experiments on the Karlsruhe light ion facility KALIF. International Journal of Impact Engineering, 1995, 17, 37-46.	2.4	9
62	Change of the kinetics of shock-wave deformation and fracture of VT1-0 titanium as a result of annealing. Physics of the Solid State, 2016, 58, 1191-1198.	0.2	9
63	High-Strain Deformation and Spallation Strength of 09CrNi2MoCu Steel Obtained by Direct Laser Deposition. Metals, 2021, 11, 1305.	1.0	9
64	Effect of Grain Size on the Properties of Aluminum Matrix Composites with Graphene. Metals, 2022, 12, 1054.	1.0	9
65	On the Yield Strength of Single-Crystal Zinc under Uniaxial Compression in a Plane Shock Wave. Technical Physics, 2005, 50, 621.	0.2	8
66	Evolution of Shock Waves in Silicon Carbide Rods. AIP Conference Proceedings, 2006, , .	0.3	8
67	Hardening of metals and alloys during shock compression. Technical Physics, 2015, 60, 1021-1026.	0.2	8
68	Dynamic strength of reaction-sintered boron carbide ceramic. Technical Physics, 2015, 60, 863-868.	0.2	8
69	Quasi-static and shock-wave loading of ultrafine-grained aluminum: effect of microstructural characteristics. Journal of Materials Science, 2018, 53, 14681-14693.	1.7	8
70	Strength Properties of the Heat-Resistant Inconel 718 Superalloy Additively Manufactured by Direct Laser Deposition Method under Shock Compression. Metals, 2022, 12, 967.	1.0	8
71	Strength of plasma sprayed turbine-blade coatings using an advanced spallation technique. Journal of Applied Physics, 2001, 89, 6523-6529.	1.1	7
72	A Study of the Failure Wave Phenomenon in Brittle Materials. AIP Conference Proceedings, 2004, , .	0.3	7

#	Article	IF	CITATIONS
73	INFLUENCE OF NANO-SIZE INCLUSIONS ON SPALL FRACTURE OF COPPER SINGLE CRYSTALS. AIP Conference Proceedings, 2008, , .	0.3	7
74	Elastic-plastic deformation and fracture of shock-compressed single-crystal and polycrystalline copper near melting. Technical Physics, 2013, 58, 1437-1442.	0.2	7
75	Dynamic strength of reaction-sintered silicon carbide ceramics. Mechanics of Solids, 2014, 49, 616-622.	0.3	7
76	Response of magnesium single crystals to shock-wave loading at room and elevated temperatures. Journal of Physics: Conference Series, 2014, 500, 112027.	0.3	7
77	The spall strength and Hugoniot elastic limit of mono-crystalline and polycrystalline copper near melting temperature. Journal of Physics: Conference Series, 2014, 500, 112053.	0.3	7
78	Deformation mechanisms and microplasticity of austenitic TRIP/TWIP steel under flyer plate impact. EPJ Web of Conferences, 2018, 183, 03007.	0.1	7
79	High-Rate Deformation and Fracture of 15Kh2NMFA Steel under Impact Loading at Normal and Elevated Temperatures. Technical Physics, 2020, 65, 420-427.	0.2	7
80	The Effect of Graphene Additives on the Structure and Properties of Aluminum. Physics of Metals and Metallography, 2020, 121, 1193-1202.	0.3	7
81	Shock Compression and Spalling of Cobalt at Normal and Elevated Temperatures. Combustion, Explosion and Shock Waves, 2002, 38, 598-601.	0.3	6
82	Experimental investigations and modelling of strain rate and temperature effects on the flow behaviour of 1045 steel. European Physical Journal Special Topics, 2006, 134, 75-80.	0.2	6
83	Spall fracture in sapphire. Technical Physics Letters, 2011, 37, 294-297.	0.2	6
84	The resistance to deformation and facture of magnesium ma2-1 under shock-wave loading at 293 k and 823 k of the temperature. AIP Conference Proceedings, 2012, , .	0.3	6
85	Influence of the temperature-induced martensitic-austenitic transformation on the strength properties of high-alloy steels under dynamic loading. Combustion, Explosion and Shock Waves, 2015, 51, 124-129.	0.3	6
86	Influence of the reversible α–ε phase transition and preliminary shock compression on the spall strength of armco iron. Technical Physics, 2016, 61, 84-90.	0.2	6
87	Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression. Physics of Metals and Metallography, 2017, 118, 601-607.	0.3	6
88	Anomaly in the dynamic strength of austenitic stainless steel 12Cr19Ni10Ti under shock wave loading. Mechanics of Solids, 2017, 52, 407-416.	0.3	6
89	New data on the kinetics and governing factors of the spall fracture of metals. Journal of Physics: Conference Series, 2018, 946, 012039.	0.3	6
90	Dynamic Strength of a Eutectic Bismuth–Lead Alloy in the Solid and Liquid States. Journal of Experimental and Theoretical Physics, 2019, 128, 268-273.	0.2	6

#	Article	IF	CITATIONS
91	Compressive and tensile strength of steel fibrous reinforced concrete under explosive loading. International Journal of Fracture, 2019, 215, 129-138.	1.1	6
92	Dynamic Strength of Submicrocrystalline and Nanocrystalline Copper Obtained by High-Strain-Rate Deformation. Physics of Metals and Metallography, 2020, 121, 391-397.	0.3	6
93	The Strength of Inconel 625, Manufactured by the Method of Direct Laser Deposition under Sub-Microsecond Load Duration. Metals, 2021, 11, 1796.	1.0	6
94	Impact response of pre-strained pure vanadium. Journal of Applied Physics, 2022, 131, .	1.1	6
95	Elastic-plastic deformation and spall fracture of metals at high temperatures. , 1998, , .		5
96	SHOCK-WAVE RESPONSE OF Ni-Ti SHAPE MEMORY ALLOYS IN THE TRANSFORMATION TEMPERATURE RANGE. , 2009, , .		5
97	Special Features of the Mechanical Characteristics of Al–Al2O3 Composites Produced By Explosive Compaction of Powders Under Shock-Wave Deformation. Russian Physics Journal, 2016, 58, 1358-1361.	0.2	5
98	Microstructure of CrMnNi Cast Steel After Explosive-Driven Flyer-Plate Impact at Room Temperature and Below. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 75-83.	1.1	5
99	The Effect of Small Additions of Carbon Nanotubes on the Mechanical Properties of Epoxy Polymers under Static and Dynamic Loads. Technical Physics, 2018, 63, 32-40.	0.2	5
100	Strength Properties of Aluminum-Oxide Ceramics Prepared by the Additive Manufacturing Method under Shock-Wave Loading. Technical Physics Letters, 2018, 44, 898-901.	0.2	5
101	The Compressibility of Single Crystals of Zinc in the Region of Positive and Negative Pressures. High Temperature, 2004, 42, 259-266.	0.1	4
102	Influence of Temperature upon the Î \pm â \dagger 'ω Transition in Titanium. AlP Conference Proceedings, 2006, , .	0.3	4
103	Effect of the structural state of graphite on the parameters and kinetics of transformation into diamond under shock compression. Physics of the Solid State, 2007, 49, 2185-2190.	0.2	4
104	Longitudinal and bulk compressibility of soda-lime glass at pressures to 10 GPa. Technical Physics, 2007, 52, 328-332.	0.2	4
105	To the mechanisms of failure wave. Journal of Applied Physics, 2008, 104, 093509.	1.1	4
106	EFFECT OF CRYSTALLINE ANISOTROPY ON SHOCK PROPAGATION IN SAPPHIRE. , 2009, , .		4
107	Effect of a fullerene C60 addition on the strength properties of nanocrystalline copper and aluminum under shock-wave loading. Technical Physics, 2014, 59, 378-383.	0.2	4
108	The influence of the admixture of the fullerene C60 on the strength properties of aluminum and copper under shock-wave loading. Journal of Physics: Conference Series, 2014, 500, 112008.	0.3	4

#	Article	IF	CITATIONS
109	Anomalous compressibility of quartz glass within the tensile stress domain and at elevated temperatures. High Temperature, 2016, 54, 662-666.	0.1	4
110	The influence of the structure of ultrafine-grained aluminium alloys on their mechanical properties under dynamic compression and shock-wave loading. Journal of Physics: Conference Series, 2017, 894, 012016.	0.3	4
111	The Influence of the Structure of a Magnesium–Aluminum Nitride Metal-Matrix Composite on the Resistance to Deformation under Quasi-Static and Dynamic Loading. Technical Physics Letters, 2018, 44, 912-915.	0.2	4
112	Influence of High-Temperature Annealing on the Resistance to High Strain Rate and Fracture of Tantalum at Temperatures of 20 and 500°C. Technical Physics, 2019, 64, 674-679.	0.2	4
113	Resistance to high-rate deformation and fracture of lead at normal and elevated temperatures in the sub-microsecond time range. Journal of Applied Physics, 2020, 128, 025902.	1.1	4
114	High-Rate Deformation of Titanium in Shock Waves at Normal and Elevated Temperatures. Journal of Experimental and Theoretical Physics, 2021, 132, 438-445.	0.2	4
115	Deformation and failure of structural steels in pulsed loading. Strength of Materials, 1992, 24, 270-275.	0.2	3
116	Effect of an inert high-modulus ceramic wall on detonation propagation in solid explosive charges. Combustion, Explosion and Shock Waves, 1994, 30, 674-681.	0.3	3
117	Investigations of the Dynamic Strength Variations in Metals. European Physical Journal Special Topics, 1997, 07, C3-927-C3-932.	0.2	3
118	Elastic moduli and dynamic yield strength of metals near the melting temperature. , 1998, , .		3
119	Yield and Strength Properties of the Ti-6-22-22S Alloy over a Wide Strain Rate and Temperature Range. AIP Conference Proceedings, 2002, , .	0.3	3
120	Sub-Microsecond Yield and Tensile Strengths of Metals and Alloys at Elevated Temperatures. AIP Conference Proceedings, 2004, , .	0.3	3
121	Compressive Fracture of Brittle Materials under Divergent Impact Loading. AIP Conference Proceedings, 2006, , .	0.3	3
122	PHENOMENOLOGICAL DESCRIPTION OF THE FAILURE WAVES IN GLASSES. , 2008, , .		3
123	Deformation behavior of submicrocrystalline aluminum alloys during dynamic loading. Russian Metallurgy (Metally), 2016, 2016, 342-348.	0.1	3
124	Temperature–rate dependences of the flow stress and the resistance to fracture of a VT6 titanium alloy under shock loading at a temperature of 20 and 600°C. Technical Physics, 2016, 61, 1229-1236.	0.2	3
125	Evolution of Shock Waves in Hot-Pressed Ceramics of Boron Carbide and Silicon Carbide. Technical Physics, 2018, 63, 1755-1761.	0.2	3
126	Evaluation of Viscosity of Bi–Pb Melt (56.5%–43.5%) by the Width of a Weak Shock Wave. High Temperature, 2018, 56, 685-688.	0.1	3

#	Article	IF	CITATIONS
127	Elastic Precursor Decay and Spallation in Nonporous Tungsten Carbide Ceramics. Technical Physics, 2019, 64, 356-360.	0.2	3
128	Polymorphic Transformations and Phase Transitions in Shock-Compressed Solids. , 2004, , 189-216.		3
129	Effect of small pre-strain on the resistance of molybdenum [100] single crystal to high strain rate deformation and fracture. Journal of Applied Physics, 2022, 131, .	1.1	3
130	Viscoelasticity of aluminum in rarefaction waves. Journal of Applied Mechanics and Technical Physics, 1989, 29, 824-826.	0.1	2
131	Impact response of titanium alloys at elevated temperatures. European Physical Journal Special Topics, 2003, 110, 839-844.	0.2	2
132	Measurements of Sound Speed in Zinc in the Negative Pressure Region. AIP Conference Proceedings, 2004, , .	0.3	2
133	Orientation effect on the parameters of the polymorphic transformation of graphite under shock compression. JETP Letters, 2008, 88, 220-223.	0.4	2
134	Peculiarities of evolutions of elastic-plastic shock compression waves in different materials. Journal of Physics: Conference Series, 2016, 774, 012048.	0.3	2
135	Evolutions of elastic-plastic shock compression waves in different materials. AIP Conference Proceedings, 2017, , .	0.3	2
136	Elastic-Plastic Response of Solids Under Shock-Wave Loading. , 2004, , 29-82.		2
137	Yield and Strength Properties of Metals and Alloys at Elevated Temperatures. , 2004, , 83-109.		2
138	Behavior of Brittle Materials under Shock-Wave Loading. , 2004, , 111-178.		2
139	Re-Reflections of an Elastic Precursor of a Shock Wave in Solids. Doklady Physics, 2021, 66, 35-38.	0.2	2
140	Damage-failure transition under consecutive dynamic and very high cycle fatigue loads. Journal of Applied Physics, 2022, 131, .	1.1	2
141	Effect of Heat Treatment and Test Temperature on the Strength Properties of Cast Heat-Resistant Nickel Base Inconel 718 Superalloy under Shock-Wave Loading. Metals, 2022, 12, 1098.	1.0	2
142	Light-ion beam-target interaction experiments on KALIF. Il Nuovo Cimento A, 1993, 106, 1771-1780.	0.2	1
143	Diagnostics of highâ€power ion beam interaction with composite targets. Journal of Applied Physics, 1996, 79, 2180-2185.	1.1	1
144	Anomalous Behavior of Aluminum Near the Melting Temperature: Transition in the Rate Controlling Mechanism of Yielding and Realization of Superheated Solid States under Tension. AIP Conference Proceedings, 2002, , .	0.3	1

#	Article	IF	CITATIONS
145	Kinematics of failure waves in glasses. Technical Physics Letters, 2002, 28, 261-262.	0.2	1
146	On the residual yield stress of shocked metals. Journal of Physics: Conference Series, 2014, 500, 112015.	0.3	1
147	Dissipative processes under the shock compression of glass. Technical Physics, 2016, 61, 388-394.	0.2	1
148	Peculiarities of fracture in submicrocrystalline Al–Mg–Mn alloy under impact compression. Technical Physics Letters, 2017, 43, 470-472.	0.2	1
149	Interconnection of Structural Characteristics with Dynamic Properties of A5083 Aluminum Alloy. Inorganic Materials: Applied Research, 2019, 10, 168-173.	0.1	1
150	Spalling in Sapphire in Different Crystallographic Directions under Shock Compression. Technical Physics, 2020, 65, 921-924.	0.2	1
151	Failure of glass during intensive pulsed action. Glass and Ceramics (English Translation of Steklo I) Tj ETQq1 1 0.	784314 rg 0.2	gBT/Overlock
152	A Study of the Failure Wave Phenomenon in Glasses at Peak Stresses Exceeding the HEL. AIP Conference Proceedings, 2006, , .	0.3	0
153	A STUDY OF PRE-STRESS EFFECT ON THE FAILURE WAVES IN GLASSES. , 2008, , .		Ο
154	SUB-MICROSECOND GRAPHITE-DIAMOND TRANSFORMATION AT NORMAL AND ELEVATED TEMPERATURES. , 2009, , .		0
155	INFLUENCE OF STRUCTURE AND ORIENTATION OF GRAPHITE ON ITS POLYMORPHIC TRANSFORMATION UNDER SHOCK COMPRESSION. , 2009, , .		Ο
156	Spall strength of sapphire. , 2012, , .		0
157	Joint Effect of Small Additives of Carbon Nanoparticles of Different Morphologies on the Mechanical Characteristics of Cross-Linked Polyurethanes under Static and Dynamic Loads. Technical Physics, 2019, 64, 865-872.	0.2	Ο
158	Grain Size Effects on Static and Dynamic Strength of Ultrafine-Grained Al-Mg-Mn Alloy Produced by High-Pressure Torsion. Journal of Materials Engineering and Performance, 2020, 29, 464-469.	1.2	0
159	Two Examples of Spatially Resolved Shock-Wave Tests. , 2004, , 179-187.		Ο
160	Beam-Matter Experiments with High-Power Proton Beams on KALIF. , 1995, , 261-266.		0
161	Compression, Rarefaction, and Failure Waves in Silicate Glasses. , 2017, , 933-937.		0
162	Effect of Thermal Treatment on the Hugoniot Elastic Limit and Spall Strength of the Preeutectic Pb–2.77% Sb Alloy. Physics of Metals and Metallography, 2020, 121, 1119-1125.	0.3	0

#	Article	IF	CITATIONS
163	Impact Strength of 16Cr-20Ni-2Mo-Ti Austenite Steel under Shockwave Load in Sub-Microsecond Range. Russian Physics Journal, 2022, 64, 1930-1934.	0.2	Ο