David G Monroe

List of Publications by Citations

Source: https://exaly.com/author-pdf/4702269/david-g-monroe-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34
papers1,877
citations21
h-index42
g-index42
ext. papers2,458
ext. citations7.9
avg, IF4.83
L-index

#	Paper	IF	Citations
34	Targeting cellular senescence prevents age-related bone loss in mice. <i>Nature Medicine</i> , 2017 , 23, 1072-	1979 5	464
33	Update on Wnt signaling in bone cell biology and bone disease. <i>Gene</i> , 2012 , 492, 1-18	3.8	308
32	Identification of Senescent Cells in the Bone Microenvironment. <i>Journal of Bone and Mineral Research</i> , 2016 , 31, 1920-1929	6.3	214
31	Estrogen receptor alpha and beta heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells. <i>Molecular Endocrinology</i> , 2005 , 19, 1555-68		118
30	Regulation of Bone Metabolism by Sex Steroids. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2018 , 8,	5.4	89
29	Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans. <i>Bone</i> , 2014 , 59, 1-6	4.7	79
28	Effects of estrogen on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in postmenopausal women. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2014 , 99, E87	1- 8 ^{.6}	56
27	Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. <i>Nature Communications</i> , 2020 , 11, 87	17.4	53
26	Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2012 , 97, 4219-27	5.6	45
25	Sympathetic 🛘 -adrenergic signaling contributes to regulation of human bone metabolism. <i>Journal of Clinical Investigation</i> , 2018 , 128, 4832-4842	15.9	44
24	Effects of Age and Estrogen on Skeletal Gene Expression in Humans as Assessed by RNA Sequencing. <i>PLoS ONE</i> , 2015 , 10, e0138347	3.7	43
23	Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapy-Related Bone Loss. Journal of Bone and Mineral Research, 2020 , 35, 1119-1131	6.3	40
22	Wnt10b activates the Wnt, notch, and NFB pathways in U2OS osteosarcoma cells. <i>Journal of Cellular Biochemistry</i> , 2011 , 112, 1392-402	4.7	39
21	Independent Roles of Estrogen Deficiency and Cellular Senescence in the Pathogenesis of Osteoporosis: Evidence in Young Adult Mice and Older Humans. <i>Journal of Bone and Mineral Research</i> , 2019 , 34, 1407-1418	6.3	35
20	Examination of nuclear receptor expression in osteoblasts reveals Rorlas an important regulator of osteogenesis. <i>Journal of Bone and Mineral Research</i> , 2012 , 27, 891-901	6.3	30
19	Deletion of Estrogen Receptor Beta in Osteoprogenitor Cells Increases Trabecular but Not Cortical Bone Mass in Female Mice. <i>Journal of Bone and Mineral Research</i> , 2016 , 31, 606-14	6.3	28
18	Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women. <i>Bone</i> , 2015 , 76, 49-57	4.7	27

LIST OF PUBLICATIONS

17	Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. <i>JCI Insight</i> , 2020 , 5,	9.9	25	
16	LPS-induced premature osteocyte senescence: Implications in inflammatory alveolar bone loss and periodontal disease pathogenesis. <i>Bone</i> , 2020 , 132, 115220	4.7	25	
15	miR-219a-5p Regulates RoriDuring Osteoblast Differentiation and in Age-related Bone Loss. <i>Journal of Bone and Mineral Research</i> , 2019 , 34, 135-144	6.3	24	
14	Estrogen receptor isoform-specific regulation of the retinoblastoma-binding protein 1 (RBBP1) gene: roles of AF1 and enhancer elements. <i>Journal of Biological Chemistry</i> , 2006 , 281, 28596-604	5.4	22	
13	Retinoblastoma binding protein-1 (RBP1) is a Runx2 coactivator and promotes osteoblastic differentiation. <i>BMC Musculoskeletal Disorders</i> , 2010 , 11, 104	2.8	17	
12	Osteoprotection Through the Deletion of the Transcription Factor Rorlln Mice. <i>Journal of Bone and Mineral Research</i> , 2018 , 33, 720-731	6.3	11	
11	Periodontal Disease and Senescent Cells: New Players for an Old Oral Health Problem?. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	7	
10	Senescent cells exacerbate chronic inflammation and contribute to periodontal disease progression in old mice. <i>Journal of Periodontology</i> , 2021 , 92, 1483-1495	4.6	6	
9	Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. <i>Nature Reviews Endocrinology</i> , 2021 , 17, 685-697	15.2	6	
8	Calcium mimics the chemotactic effect of conditioned media and is an effective inducer of bone regeneration. <i>PLoS ONE</i> , 2019 , 14, e0210301	3.7	5	
7	The role of senolytics in osteoporosis and other skeletal pathologies. <i>Mechanisms of Ageing and Development</i> , 2021 , 199, 111565	5.6	4	
6	miRNAs in osteoclast biology. <i>Bone</i> , 2021 , 143, 115757	4.7	3	
5	Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity <i>Aging Cell</i> , 2022 , e13602	9.9	3	
4	Modulation of fracture healing by the transient accumulation of senescent cells. <i>ELife</i> , 2021 , 10,	8.9	2	
3	Bone marrow adiposity in models of radiation- and aging-related bone loss is dependent on cellular senescence <i>Journal of Bone and Mineral Research</i> , 2022 ,	6.3	1	
2	The classical estrogen receptor transcriptional pathway. <i>Clinical Reviews in Bone and Mineral Metabolism</i> 2006 4 129-140	2.5		

Osteoporosis and bone loss **2022**, 335-361