Giovanni Spagnuolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4701857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	System-on-Chip FPGA Devices for Complex Electrical Energy Systems Control. IEEE Industrial Electronics Magazine, 2022, 16, 53-64.	2.3	9
2	A fast fuel cell parametric identification approach based on machine learning inverse models. Energy, 2022, 239, 122140.	4.5	8
3	Artificial neural network based photovoltaic module diagnosis by current–voltage curve classification. Solar Energy, 2022, 236, 383-392.	2.9	12
4	Mismatching and partial shading identification in photovoltaic arrays by an artificial neural network ensemble. Solar Energy, 2022, 236, 712-723.	2.9	13
5	Experimental comparison between various fitting approaches based on RMSE minimization for photovoltaic module parametric identification. Energy Conversion and Management, 2022, 258, 115526.	4.4	11
6	Analysis of the degradation of amorphous siliconâ€based modules after 11 years of exposure by means of IEC60891:2021 procedure 3. Progress in Photovoltaics: Research and Applications, 2022, 30, 1176-1187.	4.4	5
7	New model to study the outdoor degradation of thin–film photovoltaic modules. Renewable Energy, 2022, 193, 857-869.	4.3	5
8	Real time Energy Management System of a photovoltaic based e-vehicle charging station using Explicit Model Predictive Control accounting for uncertainties. Sustainable Energy, Grids and Networks, 2022, 31, 100769.	2.3	12
9	An improved mathematical method for the identification of fuel cell impedance parameters based on the interval arithmetic. Mathematics and Computers in Simulation, 2021, 183, 78-96.	2.4	1
10	SoC-based embedded real-time simulation of mismatched photovoltaic strings. Mathematics and Computers in Simulation, 2021, 184, 267-281.	2.4	5
11	Multi-Variable Perturb and Observe Algorithm for Grid-Tied PV Systems With Joint Central and Distributed MPPT Configuration. IEEE Transactions on Sustainable Energy, 2021, 12, 360-367.	5.9	28
12	Temperature coefficients of degraded crystalline silicon photovoltaic modules at outdoor conditions. Progress in Photovoltaics: Research and Applications, 2021, 29, 558-570.	4.4	19
13	Analysis of the degradation of singleâ€crystalline silicon modules after 21 years of operation. Progress in Photovoltaics: Research and Applications, 2021, 29, 907-919.	4.4	23
14	Automatic features extraction of faults in PEM fuel cells by a siamese artificial neural network. International Journal of Hydrogen Energy, 2021, 46, 34854-34866.	3.8	13
15	DC-Link Capacitor Diagnosis in a Single-Phase Grid-Connected PV System. Energies, 2021, 14, 6754.	1.6	7
16	Virtual Sensing of Photovoltaic Module Operating Parameters. IEEE Journal of Photovoltaics, 2020, 10, 852-862.	1.5	15
17	Centralized Control in Photovoltaic Distributed Maximum Power Point Tracking Systems. Lecture Notes in Electrical Engineering, 2020, , 511-523.	0.3	1
18	Enhanced simulation of total cross tied photovoltaic arrays. Mathematics and Computers in Simulation, 2019, 158, 49-64.	2.4	10

#	Article	IF	CITATIONS
19	Identification and Diagnosis of a Photovoltaic Module Based on Outdoor Measurements. , 2019, , .		5
20	An interval arithmetic-based method for parametric identification of a fuel cell equivalent circuit model. Applied Energy, 2019, 242, 1226-1236.	5.1	21
21	An Evolutionary Computation Approach for the Online/On-Board Identification of PEM Fuel Cell Impedance Parameters with A Diagnostic Perspective. Energies, 2019, 12, 4374.	1.6	8
22	Adaptive Grid-Voltage Feedforward for Three-Phase Inverters applying Perturb and Observe Algorithm to minimize Current THD. , 2019, , .		0
23	Photovoltaic Module and Submodule Level Power Electronics and Control. IEEE Transactions on Industrial Electronics, 2019, 66, 3856-3859.	5.2	10
24	SoC implementation of a photovoltaic reconfiguration algorithm by exploiting a HLS-based architecture. Mathematics and Computers in Simulation, 2019, 158, 520-537.	2.4	5
25	Numerical study of the DEKF parameter identification capabilities in fuel cell EIS tests. , 2018, , .		5
26	General modeling procedure for photovoltaic arrays. Electric Power Systems Research, 2018, 155, 67-79.	2.1	27
27	EIS Method for the On-Board Evaluation of the Fuel Cell Impedance. , 2018, , .		7
28	Current equalization of mismatched PV panels based on a capacitor energy storage. , 2018, , .		2
29	Online Identification of Photovoltaic Source Parameters by Using a Genetic Algorithm. Applied Sciences (Switzerland), 2018, 8, 9.	1.3	19
30	A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions. Energies, 2018, 11, 767.	1.6	12
31	Photovoltaic plant cloud shadowing and energy drops in Northern Europe. , 2018, , .		0
32	Real Time Simulation of Mismatched PV Arrays. , 2018, , .		0
33	Quantification of photovoltaic module degradation using model based indicators. Mathematics and Computers in Simulation, 2017, 131, 101-113.	2.4	30
34	FPGA-Based Implementation of Dual Kalman Filter for PV MPPT Applications. IEEE Transactions on Industrial Informatics, 2017, 13, 176-185.	7.2	45
35	A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel. Mathematics and Computers in Simulation, 2017, 131, 38-54.	2.4	107
36	Translation of the Single-Diode PV Model Parameters Identified by Using Explicit Formulas. IEEE Journal of Photovoltaics, 2017, 7, 1009-1016.	1,5	54

#	Article	IF	CITATIONS
37	An Isolated Semiresonant DC/DC Converter for High Power Applications. IEEE Transactions on Industry Applications, 2017, 53, 2200-2209.	3.3	10
38	Experimental evaluation of a MPPT technique for electrical mobility PV applications. , 2017, , .		0
39	FPGA based implementation of a sliding-mode observer for battery state of charge estimation. , 2017, , .		3
40	A Kalman filter based approach to PEM fuel cell fault detection. , 2017, , .		8
41	FPGA implementation of the EIS technique for the on-line diagnosis of fuel-cell systems. , 2017, , .		7
42	Parameter translation for single-diode PV models based on explicit identification. , 2017, , .		4
43	Experimental characterization of a novel semi-resonant dc/dc converter. , 2016, , .		1
44	Vanadium Redox Flow Batteries: Potentials and Challenges of an Emerging Storage Technology. IEEE Industrial Electronics Magazine, 2016, 10, 20-31.	2.3	61
45	System-on-chip implementation of a PV dynamical reconfiguration algorithm. , 2016, , .		1
46	Stable DC bus voltage balancing in a renewable source grid connected neutral point clamped inverter. , 2016, , .		1
47	A new approach for DC bus voltage balancing in a solar electric vehicle charging station. , 2016, , .		2
48	Optimized Configuration of Mismatched Photovoltaic Arrays. IEEE Journal of Photovoltaics, 2016, 6, 1210-1220.	1.5	52
49	Clinical and Spectrophotometric Evaluation of LED and Laser Activated Teeth Bleaching. Open Dentistry Journal, 2016, 10, 242-250.	0.2	31
50	Identification of ferrite core inductors parameters by evolutionary algorithms. , 2015, , .		6
51	An adaptive method for the identification of the main features of photovoltaic modules. , 2015, , .		Ο
52	Comparison of state and parameter estimators for electric vehicle batteries. , 2015, , .		10
53	About the identification of the single-diode model parameters of high-fill-factor photovoltaic modules. , 2015, , .		5
54	Fast estimation of MPPs in mismatched PV arrays based on lossless model. , 2015, , .		2

Fast estimation of MPPs in mismatched PV arrays based on lossless model. , 2015, , . 54

4

#	Article	IF	CITATIONS
55	A method for the fast estimation of the maximum power points in mismatched PV strings. Electric Power Systems Research, 2015, 121, 115-125.	2.1	11
56	An evolutionary approach to the dynamical reconfiguration of photovoltaic fields. Neurocomputing, 2015, 170, 393-405.	3.5	27
57	Control of Photovoltaic Arrays: Dynamical Reconfiguration for Fighting Mismatched Conditions and Meeting Load Requests. IEEE Industrial Electronics Magazine, 2015, 9, 62-76.	2.3	78
58	A geostatistical approach for identifying the shadowing conditions affecting a PV plant. , 2015, , .		0
59	A losses-based analysis for electric vehicle wireless chargers. , 2015, , .		10
60	Open-circuit voltage measurement of Lithium-Iron-Phosphate batteries. , 2015, , .		13
61	Parameters identification of the single-diode model for amorphous photovoltaic panels. , 2015, , .		6
62	A new semi-resonant dc/dc converter topology. , 2015, , .		2
63	Models and methods for energy productivity analysis of PV systems. , 2015, , .		5
64	Monitoring, Diagnosis, Prognosis, and Techniques for Increasing the Lifetime/Reliability of Photovoltaic Systems. IEEE Transactions on Industrial Electronics, 2015, 62, 7226-7227.	5.2	14
65	Model-Based Degradation Analysis of Photovoltaic Modules Through Series Resistance Estimation. IEEE Transactions on Industrial Electronics, 2015, 62, 7256-7265.	5.2	62
66	Dual-Kalman-Filter-Based Identification and Real-Time Optimization of PV Systems. IEEE Transactions on Industrial Electronics, 2015, 62, 7266-7275.	5.2	16
67	A PSO-Based Global MPPT Technique for Distributed PV Power Generation. IEEE Transactions on Industrial Electronics, 2015, 62, 1047-1058.	5.2	254
68	A two-steps algorithm improving the P&O steady state MPPT efficiency. Applied Energy, 2014, 113, 414-421.	5.1	92
69	A perturbation strategy for fuel consumption minimization in polymer electrolyte membrane fuel cells: Analysis, Design and FPGA implementation. Applied Energy, 2014, 119, 21-32.	5.1	50
70	A method for simulating large PV arrays that include reverse biased cells. Applied Energy, 2014, 123, 157-167.	5.1	27
71	Design of a Sliding-Mode-Controlled SEPIC for PV MPPT Applications. IEEE Transactions on Industrial Electronics, 2014, 61, 3387-3398.	5.2	126
72	Online Recording a PV Module Fingerprint. IEEE Journal of Photovoltaics, 2014, 4, 659-668.	1.5	18

#	Article	IF	CITATIONS
73	Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review. IET Power Electronics, 2014, 7, 1396-1413.	1.5	143
74	FPGA-based implementation of an adaptive P&O MPPT controller for PV applications. , 2014, , .		13
75	About the criteria for triggering the reconfiguration of a photovoltaic array. , 2014, , .		6
76	Optimization of Perturbative PV MPPT Methods Through Online System Identification. IEEE Transactions on Industrial Electronics, 2014, 61, 6812-6821.	5.2	64
77	Granular control of photovoltaic arrays by means of a multiâ€output Maximum Power Point Tracking algorithm. Progress in Photovoltaics: Research and Applications, 2013, 21, 918-932.	4.4	34
78	A technique for mismatched PV array simulation. Renewable Energy, 2013, 55, 417-427.	4.3	57
79	Optimal control of photovoltaic arrays. Mathematics and Computers in Simulation, 2013, 91, 1-15.	2.4	12
80	Stability limit analysis for peak-current-controlled Ćuk converter. , 2013, , .		1
81	Symbolic algebra for the calculation of the series and parallel resistances in PV module model. , 2013, ,		61
82	Grid-Connected Photovoltaic Generation Plants: Components and Operation. IEEE Industrial Electronics Magazine, 2013, 7, 6-20.	2.3	380
83	A vectorial MPPT algorithm for distributed photovoltaic applications. , 2013, , .		7
84	Capacitor peak current control for MPPT photovoltaic applications. , 2013, , .		2
85	Efficient Approaches for Modeling and Simulating Photovoltaic Power Systems. IEEE Journal of Photovoltaics, 2013, 3, 500-508.	1.5	158
86	Perturb and Observe MPPT algorithm with a current controller based on the sliding mode. International Journal of Electrical Power and Energy Systems, 2013, 44, 346-356.	3.3	132
87	An Hybrid Digital-Analog Sliding Mode Controller for Photovoltaic Applications. IEEE Transactions on Industrial Informatics, 2013, 9, 1094-1103.	7.2	28
88	A model of photovoltaic fields in mismatching conditions featuring an improved calculation speed. Electric Power Systems Research, 2013, 96, 81-90.	2.1	55
89	A Fast Current-Based MPPT Technique Employing Sliding Mode Control. IEEE Transactions on Industrial Electronics, 2013, 60, 1168-1178.	5.2	190
90	Introduction to the Special Section on Smart Devices for Renewable Energy Systems. IEEE Transactions on Industrial Electronics, 2013, 60, 1119-1121.	5.2	2

#	Article	IF	CITATIONS
91	Photovoltaic modules diagnostic: An overview. , 2013, , .		22
92	On-line optimization of the P&O MPPT method by means of the system identification. , 2013, , .		13
93	Real Time Techniques and Architectures for Maximizing the Power Produced by a Photovoltaic Array. Smart Innovation, Systems and Technologies, 2013, , 239-257.	0.5	0
94	Modeling of photovoltaic fields in mismatching conditions by means of inflection voltages. , 2012, , .		2
95	Distributed Maximum Power Point Tracking: Challenges and Commercial Solutions. Automatika, 2012, 53, 128-141.	1.2	19
96	An Analog Technique for Distributed MPPT PV Applications. IEEE Transactions on Industrial Electronics, 2012, 59, 4713-4722.	5.2	80
97	A compact dc/dc converter for DMPPT in applications to sustainable mobility. , 2012, , .		2
98	Effect of autoclaving on the surfaces of <scp><scp>TiN</scp></scp> oated and conventional nickel–titanium rotary instruments. International Endodontic Journal, 2012, 45, 1148-1155.	2.3	45
99	DCM operation of interleaved DC/DC converters for PV applications. , 2012, , .		8
100	One Cycle Control for photovoltaic module-integrated inverters. , 2012, , .		2
101	Digital implementation of one cycle control in back to back converters. , 2012, , .		3
102	What is the best dc/dc converter for an AC module? Experimental analysis of two interesting solutions. , 2011, , .		7
103	Factors limiting the efficiency of DMPPT in PV applications. , 2011, , .		26
104	A Multivariable Perturb-and-Observe Maximum Power Point Tracking Technique Applied to a Single-Stage Photovoltaic Inverter. IEEE Transactions on Industrial Electronics, 2011, 58, 76-84.	5.2	120
105	Recent advances in efficient and reliable photovoltaic systems. , 2011, , .		3
106	A fast current-based MPPT technique based on sliding mode control. , 2011, , .		10
107	Improving the perturb and observe Maximum Power Point Tracking by using Sliding Mode control. , 2011, , .		2
108	Effects of sodium hypochlorite and ethylenediaminetetraacetic acid on rotary nickel-titanium instruments evaluated using atomic force microscopy. International Endodontic Journal, 2011, 44, 203-209.	2.3	40

#	Article	IF	CITATIONS
109	Enhancing Polymeric Electrolyte Membrane Fuel Cell Control by Means of the Perturb and Observe Technique. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	8
110	Renewable Energy Operation and Conversion Schemes: A Summary of Discussions During the Seminar on Renewable Energy Systems. IEEE Industrial Electronics Magazine, 2010, 4, 38-51.	2.3	113
111	A new analog MPPT technique: TEODI. Progress in Photovoltaics: Research and Applications, 2010, 18, 28-41.	4.4	29
112	FPGA-based controller for mitigation of the 100 Hz oscillation in grid connected PV systems. , 2010, , .		4
113	AC module design employing low capacitance values. , 2010, , .		3
114	Performance parametric analysis of a PEMFC model. , 2010, , .		4
115	Design of dc/dc Converters for DMPPT PV Applications Based on the Concept of Energetic Efficiency. Journal of Solar Energy Engineering, Transactions of the ASME, 2010, 132, .	1.1	35
116	Fuel cell MPPT for fuel consumption optimization. , 2010, , .		16
117	TEODI: PV MPPT based on the Equalization of the Output operating points in correspondence of the forced Displacement of the Input operating points. , 2010, , .		6
118	TEODI: A new technique for Distributed Maximum Power Point Tracking PV Applications. , 2010, , .		8
119	A PEM Fuel-Cell Model Featuring Oxygen-Excess-Ratio Estimation and Power-Electronics Interaction. IEEE Transactions on Industrial Electronics, 2010, 57, 1914-1924.	5.2	79
120	Optimal Buck Converter Output Filter Design for Point-of-Load Applications. IEEE Transactions on Industrial Electronics, 2010, 57, 1330-1341.	5.2	52
121	Low-Frequency Current Oscillations and Maximum Power Point Tracking in Grid-Connected Fuel-Cell-Based Systems. IEEE Transactions on Industrial Electronics, 2010, 57, 2042-2053.	5.2	72
122	Geometric-constants-based design of transformers for isolated switching converters. , 2010, , .		1
123	A multivariable MPPT algorithm for granular control of photovoltaic systems. , 2010, , .		14
124	Fighting Fuel cell current oscillations in grid connected applications. , 2009, , .		1
125	Dynamic model of oneâ€cycle control for converters operating in continuous and discontinuous conduction modes. International Journal of Circuit Theory and Applications, 2009, 37, 661-684.	1.3	18

Dynamic model of a grid-connected photovoltaic inverter with one cycle control. , 2009, , .

6

#	Article	IF	CITATIONS
127	Optimization of Perturb and Observe control of grid connected PEM Fuel Cells. , 2009, , .		6
128	Energy efficiency effective design of DC/DC converters for DMPPT PV applications. , 2009, , .		15
129	A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems. IEEE Transactions on Industrial Electronics, 2009, 56, 4473-4482.	5.2	373
130	Robust Design of Electromagnetic Systems Based on Interval Taylor Extension Applied to a Multiquadric Performance Function. IEEE Transactions on Magnetics, 2008, 44, 1134-1137.	1.2	21
131	Distributed maximum power point tracking of photovoltaic arrays: Novel approach and system analysis. IEEE Transactions on Industrial Electronics, 2008, 55, 2610-2621.	5.2	471
132	Analysis of photovoltaic systems with Distributed Maximum Power Point Tracking. , 2008, , .		14
133	PCA-based design of a SEPIC converter. , 2008, , .		1
134	Power Stage Design of Fourth-Order DC–DC Converters by Means of Principal Components Analysis. IEEE Transactions on Power Electronics, 2008, 23, 2867-2877.	5.4	17
135	Reliability Issues in Photovoltaic Power Processing Systems. IEEE Transactions on Industrial Electronics, 2008, 55, 2569-2580.	5.2	479
136	Maximum Power Point Tracking in a One-Cycle-Controlled Single-Stage Photovoltaic Inverter. IEEE Transactions on Industrial Electronics, 2008, 55, 2684-2693.	5.2	150
137	Multi-objective optimization and MPPT in a single stage photovoltaic inverter. , 2008, , .		3
138	Optimal design of input filters for dc-dc switching regulator using ceramic and electrolytic capacitors. , 2008, , .		2
139	A unified method for optimal buck converter output capacitor design. , 2008, , .		2
140	Predictive & Adaptive MPPT Perturb and Observe Method. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43, 934-950.	2.6	339
141	Design and Optimization of a Maximum Power Point Tracking controller for a PV battery charger. , 2007, , .		6
142	Experimental characterization of the photovoltaic generator for a hybrid solar vehicle. , 2007, , .		7
143	Guidelines for the Optimization of the P&O Technique in Grid-connected Double-stage Photovoltaic Systems. , 2007, , .		13
144	Analytical model of mismatched photovoltaic fields by means of Lambert W-function. Solar Energy Materials and Solar Cells, 2007, 91, 1652-1657.	3.0	176

#	Article	IF	CITATIONS
145	Optimized one-cycle control in photovoltaic grid connected applications. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42, 954-972.	2.6	123
146	Dynamic Model of One-Cycle control for converters operating in CCM and DCM. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	3
147	Detection of acceptability regions by means of an interval arithmeticâ€based algorithm. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2006, 25, 964-978.	0.5	2
148	PEM Fuel Cells Control by means of the Perturb and Observe Technique. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	7
149	Optimization of Perturb and Observe Maximum Power Point Tracking Method. IEEE Transactions on Power Electronics, 2005, 20, 963-973.	5.4	2,305
150	Load matching of photovoltaic field orientation in stand-alone distributed power systems. , 2004, , .		0
151	Worst Case Tolerance Analysis in Static Field Problems. IEEE Transactions on Magnetics, 2004, 40, 366-370.	1.2	Ο
152	Tolerance design of controllers for switching regulators. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40, 661-674.	2.6	11
153	Variability Analysis of Composite Materials for Stress Relief in Cable Accessories. IEEE Transactions on Magnetics, 2004, 40, 418-425.	1.2	7
154	Perturb and observe MPPT technique robustness improved. , 2004, , .		37
155	Increasing the efficiency of P&O MPPT by converter dynamic matching. , 2004, , .		27
156	Steady-state analysis of hard and soft switching DC-to-DC regulators. IEEE Transactions on Power Electronics, 2003, 18, 51-64.	5.4	11
157	Steady-state analysis of PWM DC-to-DC regulators. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39, 318-334.	2.6	3
158	Worst case tolerance design of magnetic devices by evolutionary algorithms. IEEE Transactions on Magnetics, 2003, 39, 2170-2178.	1.2	15
159	Unified analysis of synchronous commutations in switching converters. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 1150-1166.	0.1	6
160	Steady-state analysis of soft-switching converters. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 939-954.	0.1	8
161	True worst-case circuit tolerance analysis using genetic algorithms and affine arithmetic. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2000, 47, 1285-1296.	0.1	70
162	Genetic optimization of interval arithmetic-based worst case circuit tolerance analysis. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 1999, 46, 1441-1456.	0.1	28

#	Article	IF	CITATIONS
163	INTERVAL ANALYSIS IN POWER ELECTRONICS. Journal of Circuits, Systems and Computers, 1995, 05, 317-336.	1.0	8
164	State-space models and order reduction for DC-DC switching converters in discontinuous modes. IEEE Transactions on Power Electronics, 1995, 10, 640-650.	5.4	33
165	An effective interval analysis-based method for the unified steady-state analysis of PWM switching converters. , 0, , .		6
166	Multi-discontinuous modes: a new class of discontinuous modes in PWM switching converters. , 0, , .		2
167	Profile optimisation for an HV insulator in vacuum. , 0, , .		2
168	Identification of DC-DC switching converters characteristics for control systems design using interval mathematics. , 0, , .		6
169	An interval mathematics approach to tolerance analysis of switching converters. , 0, , .		17
170	A methodological approach for improvement of vacuum-insulated HV bushings. , 0, , .		2
171	Spectral analysis of switching converters using a generalized transfer function. , 0, , .		2
172	PECS: a power electronic circuits-oriented simulator. , 0, , .		3
173	Genetic optimisation of interval mathematics-based sensitivity analysis of switching converters. , 0, , .		0
174	New approaches to the true worst-case evaluation in circuit tolerance analysis. II. Calculation of the outer solution by affine arithmetic. , 0, , .		4
175	New approaches to the true worst-case evaluation in circuit tolerance analysis. I. Calculation of the inner solution by genetic algorithms. , 0, , .		3
176	A Layered Software Architecture With Uncertainty Handling Capabilities For Circuit Computer-aided Design. , 0, , .		3
177	Catch The True Worst-case In Tolerance And Sensitivity Analysis By Genetic Algorithms And Affine Mathematics. , 0, , .		1
178	Analysis of hard synchronous commutations in switching converters. , 0, , .		10
179	Analysis of soft synchronous commutations in switching converters. , 0, , .		9
180	Analysis of switching-invariant characteristics of soft-switching cells. , 0, , .		0

Analysis of switching-invariant characteristics of soft-switching cells. , 0, , . 180

11

#	Article	IF	CITATIONS
181	Multi agent systems for circuit tolerance and sensitivity analysis. , 0, , .		1
182	Generalized invariant models for the analysis of soft-switching cells. , 0, , .		2
183	Switching-invariant models of soft-switching cells. , 0, , .		3
184	Nominal and tolerance design of closed-loop controllers for DC-DC voltage regulators. , 0, , .		2
185	An interval arithmetic-based yield evaluation in circuit tolerance design. , 0, , .		15
186	Tolerance design of DC-DC switching regulators. , 0, , .		6
187	Tolerance design of closed-loop controllers for DC-DC voltage regulators: genetic algorithms and vertex analysis based optimization. , 0, , .		6
188	Nominal and tolerance design of feedback compensators for switching regulators. , 0, , .		0
189	Resistive losses of conductors carrying SMPS current waveforms. , 0, , .		0
190	Reliable worst-case tolerance design of feedback regulated DC-DC converters by evolutionary algorithms and interval arithmetic. , 0, , .		3
191	Worst-case tolerance analysis of non-linear systems using evolutionary algorithms. , 0, , .		1
192	Matching the photovoltaic field orientation to load requirements in stand-alone distributed power systems. , 0, , .		4
193	Optimizing duty-cycle perturbation of P&O MPPT technique. , 0, , .		78
194	Optimizing sampling rate of P&O MPPT technique. , 0, , .		83
195	Range analysis of biological cells subjected to pulsed electric field. , 0, , .		0
196	Photovoltaic Inverters with Perturb & Observe MPPT Technique and One-Cycle Control. , 0, , .		19
197	One-cycle control of converters operating in DCM. , 0, , .		5
198	A novel software architecture for computer-aided analysis of circuits with uncertain parameters. , 0,		0