
Luis M RodrÃ-guez-Lorenzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4701398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 2020, 229, 115514.	5.1	319
2	Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials, 2003, 24, 3777-3785.	5.7	174
3	Controlled Crystallization of Calcium Phosphate Apatites. Chemistry of Materials, 2000, 12, 2460-2465.	3.2	168
4	Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials, 2005, 26, 1317-1327.	5.7	151
5	Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomaterials, 2004, 25, 4955-4962.	5.7	118
6	Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material. Biomaterials, 2002, 23, 1865-1872.	5.7	88
7	Sintered hydroxyfluorapatites. Part II: Mechanical properties of solid solutions determined by microindentation. Biomaterials, 2004, 25, 1385-1394.	5.7	88
8	Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials, 2001, 22, 583-588.	5.7	87
9	Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. Journal of Biomedical Materials Research Part B, 2002, 60, 159-166.	3.0	86
10	Structural and Chemical Analysis of Well-Crystallized Hydroxyfluorapatites. Journal of Physical Chemistry B, 2003, 107, 8316-8320.	1.2	75
11	Influence of ferrous iron incorporation on the structure of hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2005, 16, 387-392.	1.7	73
12	Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. Journal of Biomedical Materials Research Part B, 2002, 60, 232-240.	3.0	69
13	Colloidal processing of hydroxyapatite. Biomaterials, 2001, 22, 1847-1852.	5.7	67
14	Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers, 2017, 9, 671.	2.0	64
15	Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems. Materials Research Bulletin, 2004, 39, 83-91.	2.7	62
16	Sintered hydroxyfluorapatites. Part I: Sintering ability of precipitated solid solution powders. Biomaterials, 2004, 25, 1375-1384.	5.7	60
17	Setting Behavior and in Vitro Bioactivity of Hydroxyapatite/Calcium Sulfate Cements. Chemistry of Materials, 2002, 14, 3550-3555.	3.2	58
18	Effects of calcination temperature on the drug delivery behaviour of Ibuprofen from hydroxyapatite powders. Journal of Materials Science: Materials in Medicine, 2008, 19, 1187-1195.	1.7	47

#	Article	IF	CITATIONS
19	Composite biomaterials based on ceramic polymers. I. Reinforced systems based on Al2O3/PMMA/PLLA. , 1996, 30, 515-522.		44
20	Bioceramic nanocomposite thiol-acrylate polyHIPE scaffolds for enhanced osteoblastic cell culture in 3D. Biomaterials Science, 2017, 5, 2035-2047.	2.6	31
21	Synthesis, characterization, bioactivity and biocompatibility of nanostructured materials based on the wollastoniteâ€poly(ethylmethacrylateâ€ <i>co</i> â€vinylpyrrolidone) system. Journal of Biomedical Materials Research - Part A, 2009, 88A, 53-64.	2.1	30
22	Studies on calcium deficient apatites structure by means of MAS-NMR spectroscopy. Journal of Materials Science: Materials in Medicine, 2005, 16, 393-398.	1.7	28
23	The synthesis and characterisation of strontium and calcium folates with potential osteogenic activity. Journal of Materials Chemistry B, 2015, 3, 2708-2713.	2.9	27
24	Design of Thermoplastic 3D-Printed Scaffolds for Bone Tissue Engineering: Influence of Parameters of "Hidden―Importance in the Physical Properties of Scaffolds. Polymers, 2020, 12, 1546.	2.0	21
25	Influence of surface features of hydroxyapatite on the adsorption of proteins relevant to bone regeneration. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2332-2339.	2.1	20
26	Encapsulation of apatite particles for improvement in bone regeneration. Journal of Materials Science: Materials in Medicine, 2003, 14, 939-943.	1.7	19
27	Preparation of covalently bonded silica-alginate hybrid hydrogels by SCHIFF base and sol-gel reactions. Carbohydrate Polymers, 2021, 267, 118186.	5.1	18
28	Feasibility of ceramic-polymer composite cryogels as scaffolds for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 421-433.	1.3	17
29	Synthesis and in Vitro Cytocompatibility of Segmented Poly(Ester-Urethane)s and Poly(Ester-Urea-Urethane)s for Bone Tissue Engineering. Polymers, 2018, 10, 991.	2.0	16
30	2-(Dimethylamino)ethyl Methacrylate/(2-Hydroxyethyl) Methacrylate/α-Tricalcium Phosphate Cryogels for Bone Repair, Preparation and Evaluation of the Biological Response of Human Trabecular Bone-Derived Cells and Mesenchymal Stem Cells. Polymers, 2014, 6, 2510-2525.	2.0	14
31	Novel non-cytotoxic, bioactive and biodegradable hybrid materials based on polyurethanes/TiO 2 for biomedical applications. Materials Science and Engineering C, 2017, 75, 375-384.	3.8	12
32	Siloxane-inorganic chemical crosslinking of hyaluronic acid – based hybrid hydrogels: Structural characterization. Carbohydrate Polymers, 2020, 230, 115590.	5.1	11
33	Vibrational and 119Sn Mössbauer spectra of tin(IV) halide complexes with 1,3-dimethylurea and 1,3-dimethylthiourea. Inorganica Chimica Acta, 1993, 206, 83-87.	1.2	10
34	SYNTHESIS OF IN-SITU SILICA-ALGINATE HYBRID HYDROGELS BY A SOL-GEL ROUTE. Carbohydrate Polymers, 2020, 250, 116877.	5.1	10
35	Assessment of a PCL-3D Printing-Dental Pulp Stem Cells Triplet for Bone Engineering: An In Vitro Study. Polymers, 2021, 13, 1154.	2.0	10
36	Acrylic injectable and self-curing formulations for the local release of bisphosphonates in bone tissue. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 596-608.	1.6	9

#	Article	IF	CITATIONS
37	Optimization of the CaO and P2O5 contents on PDMS–SiO2–CaO–P2O5 hybrids intended for bone regeneration. Journal of Materials Science, 2015, 50, 5993-6006.	1.7	9
38	Synthesis and Biocompatibility of Hydroxyapatite in a Graphite Oxide Matrix. Key Engineering Materials, 0, 396-398, 477-480.	0.4	8
39	Modulación del carácter hidrofÃŀico e influencia sobre la biocompatibilidad de hÃbridos base poliuretano-siloxano. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2011, 50, 1-8.	0.9	8
40	Adsorption and conformational modification of fibronectin and fibrinogen adsorbed on hydroxyapatite. A QCMâ€Ð study. Journal of Biomedical Materials Research - Part A, 2016, 104, 2585-2594.	2.1	7
41	Application of calcium phosphates and fibronectin as complementary treatment for osteoporotic bone fractures. Injury, 2016, 47, S15-S21.	0.7	7
42	Development of wollastonite-poly(ethylmethacrylateco-vinylpyrrolidone) based materials for multifunctional devices. Journal of Biomedical Materials Research - Part A, 2007, 81A, 603-610.	2.1	6
43	Synthesis of hybrid compounds apatite–alendronate by reactive milling and effects on the structure and morphology of the apatite phase. Ceramics International, 2013, 39, 3921-3929.	2.3	6
44	Surface effects on the degradation mechanism of bioactive PDMS-SiO2-CaO-P2O5 hybrid materials intended for bone regeneration. Ceramics International, 2017, 43, 476-483.	2.3	6
45	Preparation, bioactivity, and cytotoxicity studies of poly(ester urethane)s/SiO ₂ nanocomposites. Journal of Thermoplastic Composite Materials, 2019, 32, 108-122.	2.6	5
46	Fluor-Hydroxyapatite Solid Solutions as Alternative Bioceramics. Key Engineering Materials, 2001, 218-220, 165-170.	0.4	4
47	Thermally Sprayed Scaffolds for Tissue Engineering Applications. Key Engineering Materials, 2004, 254-256, 961-964.	0.4	4
48	Encapsulation of Hydroxyapatite Microspheres with Fluorapatite Using a Diffusion Process. Journal of the American Ceramic Society, 2004, 87, 814-818.	1.9	4
49	Potential Benefits from 3D Printing and Dental Pulp Stem Cells in Cleft Palate Treatments: An In Vivo Model Study. Biomedical Journal of Scientific & Technical Research, 2019, 16, .	0.0	4
50	Surface Modification of Calcium Hydroxyfluor Carbonate Apatites by Bisphosphonates. Key Engineering Materials, 2005, 284-286, 357-360.	0.4	3
51	Incorporation of 2 nd and 3 rd Generation Bisphosphonates on Hydroxyfluorapatite. Key Engineering Materials, 2006, 309-311, 899-902.	0.4	3
52	Fracture Toughness Evaluation of Sintered Hydroxyapatite. , 1994, , 17-22.		2
53	Wollastonite-Poly(Ethylmethacrylate-Co-Vinylpyrrolydone) Nanostructured Materials: Mechanical Properties and Biocompatibility. Key Engineering Materials, 2006, 309-311, 1149-1152.	0.4	2
54	Synthesis of nanosized carbonated apatite by a modified Pechini method: hydroxyapatite nucleation from a polymeric matrix. Journal of Sol-Gel Science and Technology, 2014, 72, 571-580.	1.1	2

Luis M RodrÃguez-Lorenzo

#	Article	IF	CITATIONS
55	Calcium Phosphate Porous Scaffolds from Natural Materials. Key Engineering Materials, 2004, 254-256, 957-960.	0.4	1
56	Drug Delivery Behaviour of Hydroxyapatite and Carbonated Apatite. Key Engineering Materials, 2003, 254-256, 529-532.	0.4	1
57	Ultrasound Technology as a Novel Treatment Strategy in Pancreatic Cancer. Novel Approaches in Cancer Study, 2019, 2, .	0.2	1
58	Structural and Chemical Analysis of Well-Crystallized Hydroxyfluorapatites ChemInform, 2003, 34, no.	0.1	0
59	Encapsulation of Hydroxyapatite Particles with Fluorapatite by a Multistep Procedure. Key Engineering Materials, 2003, 240-242, 587-590.	0.4	0
60	Preparation of Targeting Vehicles for The Delivery of N-Bisphosphonates. Key Engineering Materials, 2007, 330-332, 1041-1044.	0.4	0
61	Synthesis and Characterization of Siloxane-Polyurethane Hybrid Materials. Key Engineering Materials, 0, 396-398, 481-484.	0.4	0
62	Analysis of the angular influence in the spatial study of mechanical displacements in highly anisotropic media. Mechanics of Materials, 2021, 163, 104094.	1.7	0
63	Preparation and Applications of Modulated Surface Energy Biomaterials. , 2013, , 495-538.		0
64	Modulated Surface Energy Biomaterials: Preparation and Applications. , 0, , 4815-4846.		0
65	Osteogenic properties of strontium-containing hydroxyapatite. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0
66	Apical papilla stem cells and polyurethane based scaffolds, a new approach for the development of constructs in tissue engineering. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0
67	A composite approach: adapting emulsion templated polymers for use in bone tissue engineering. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0