Kathleen A Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4701007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Reconstructed Subaerial Hot Spring Field in the â^1⁄43.5 Billion-Year-Old Dresser Formation, North Pole Dome, Pilbara Craton, Western Australia. Astrobiology, 2021, 21, 1-38.	3.0	24
2	Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs. Microbiome, 2021, 9, 135.	11.1	22
3	Plant Taphonomy and Paleoenvironment of the BahÃa Laura Complex, Middle–Late Jurassic, at the Laguna Flecha Negra Locality (Santa Cruz Province, Argentina). Ameghiniana, 2021, 58, .	0.7	Ο
4	Sooty molds from the Jurassic of Patagonia, Argentina. American Journal of Botany, 2021, 108, 1464-1482.	1.7	1
5	The Case for Ancient Hot Springs in Gusev Crater, Mars. Astrobiology, 2020, 20, 475-499.	3.0	56
6	Conifer Root Nodules Colonized by Arbuscular Mycorrhizal Fungi in Jurassic Geothermal Settings from Patagonia, Argentina. International Journal of Plant Sciences, 2020, 181, 196-209.	1.3	8
7	3D Anatomy of a 60-year-old siliceous hot spring deposit at Hipaua-Waihi-Tokaanu geothermal field, Taupo Volcanic Zone, New Zealand. Sedimentary Geology, 2020, 402, 105652.	2.1	5
8	Biomolecules from Fossilized Hot Spring Sinters: Implications for the Search for Life on Mars. Astrobiology, 2020, 20, 537-551.	3.0	24
9	Stromatolitic digitate sinters form under wideâ€ranging physicochemical conditions with diverseÂhot spring microbial communities. Geobiology, 2020, 18, 619-640.	2.4	18
10	Life is everywhere in sinters: examples from Jurassic hot-spring environments of Argentine Patagonia. Geological Magazine, 2019, 156, 1631-1638.	1.5	17
11	Genetic link between Miocene seafloor methane seep limestones and underlying carbonate conduit concretions at Rocky Knob, Gisborne, New Zealand. New Zealand Journal of Geology, and Geophysics, 2019, 62, 318-340.	1.8	5
12	Fossilised geothermal surface features of the Whitianga Volcanic Centre (Miocene), Coromandel Volcanic Zone, New Zealand: Controls and characteristics. Journal of Volcanology and Geothermal Research, 2019, 381, 209-226.	2.1	6
13	Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment. Astrobiology, 2019, 19, 1433-1441.	3.0	6
14	The Miocene Atastra Creek sinter (Bodie Hills volcanic field, California and Nevada): 4D evolution of a geomorphically intact siliceous hot spring deposit. Journal of Volcanology and Geothermal Research, 2019, 370, 65-81.	2.1	18
15	Sporadic and waning hot spring activity in the Tokaanu Domain, Hipaua-Waihi-Tokaanu geothermal field, Taupo Volcanic Zone, New Zealand. Geothermics, 2019, 77, 288-303.	3.4	6
16	Characteristics and variations of sinters in the Coromandel Volcanic Zone: application to epithermal exploration. New Zealand Journal of Geology, and Geophysics, 2019, 62, 531-549.	1.8	14
17	Upper Jurassic travertine at El Macanudo, Argentine Patagonia: a fossil geothermal field modified by hydrothermal silicification and acid overprinting. Geological Magazine, 2018, 155, 1394-1412.	1.5	19
18	The Kohuamuri siliceous sinter as a vector for epithermal mineralisation, Coromandel Volcanic Zone, New Zealand. Mineralium Deposita, 2017, 52, 181-196.	4.1	9

#	Article	IF	CITATIONS
19	Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nature Communications, 2017, 8, 15263.	12.8	192
20	Snapshot of hot-spring sinter at Geyser Valley, Wairakei, New Zealand, following anthropogenic drawdown of the geothermal reservoir. Geothermics, 2017, 68, 94-114.	3.4	16
21	New records and a new species of bivalve (Mollusca: Bivalvia) from Miocene hydrocarbon seep deposits, North Island, New Zealand. Zootaxa, 2016, 4154, 1-26.	0.5	9
22	Geyserite in hot-spring siliceous sinter: Window on Earth's hottest terrestrial (paleo)environment and its extreme life. Earth-Science Reviews, 2015, 148, 44-64.	9.1	95
23	Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context. Geology, 2015, 43, 615-618.	4.4	82
24	Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record. Astrobiology, 2015, 15, 858-882.	3.0	68
25	Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 2015, 15, 998-1029.	3.0	209
26	A large and complete Jurassic geothermal field at Claudia, Deseado Massif, Santa Cruz, Argentina. Journal of Volcanology and Geothermal Research, 2014, 275, 61-70.	2.1	34
27	Evolution of a dynamic paleo-hydrothermal system at Mangatete, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 282, 19-35.	2.1	39
28	The Paleoecology, Habitats, and Stratigraphic Range of the Enigmatic Cretaceous Brachiopod Peregrinella. PLoS ONE, 2014, 9, e109260.	2.5	41
29	Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390, 52-67.	2.3	60
30	Cretaceous methane-seep deposits from New Zealand and their fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390, 17-34.	2.3	53
31	New records of Oligocene diffuse hydrocarbon seeps, northern Cascadia margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390, 116-129.	2.3	26
32	Diverse subaerial and sublacustrine hot spring settings of the Cerro Negro epithermal system (Jurassic, Deseado Massif), Patagonia, Argentina. Journal of Volcanology and Geothermal Research, 2012, 229-230, 1-12.	2.1	39
33	Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research, 2011, 203, 35-47.	2.1	82
34	Character, Analysis, and Preservation of Biogenicity in Terrestrial Siliceous Stromatolites from Geothermal Settings. Cellular Origin and Life in Extreme Habitats, 2011, , 359-381.	0.3	10
35	Jurassic geothermal landscapes and fossil ecosystems at San AgustÃn, Patagonia, Argentina. Journal of the Geological Society, 2010, 167, 11-20.	2.1	61
36	Miocene tubular concretions in East Coast Basin, New Zealand: Analogue for the subsurface plumbing of cold seeps. Marine Geology, 2010, 272, 319-336.	2.1	68

#	Article	IF	CITATIONS
37	Geological imprint of methane seepage on the seabed and biota of the convergent Hikurangi Margin, New Zealand: Box core and grab carbonate results. Marine Geology, 2010, 272, 285-306.	2.1	51
38	The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 2010, 272, 270-284.	2.1	44
39	New and little known mollusks from ancient chemosynthetic environments. Zootaxa, 2010, 2390, .	0.5	51
40	New fossil mussels (Bivalvia: Mytilidae) from Miocene hydrocarbon seep deposits, North Island, New Zealand, with general remarks on vent and seep mussels. Zootaxa, 2010, 2577, 1.	0.5	22
41	A New Fossil Provannid Gastropod from Miocene Hydrocarbon Seep Deposits, East Coast Basin, North Island, New Zealand. Acta Palaeontologica Polonica, 2010, 55, 507-517.	0.4	16
42	Jurassic hot-spring activity in a fluvial setting at La Marciana, Patagonia, Argentina. Geological Magazine, 2009, 146, 617-622.	1.5	35
43	Bee and ant burrows in Quaternary "coffee rock―and Holocene sand dunes, Kowhai Bay, Northland, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273, 102-110.	2.3	5
44	Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand. Sedimentary Geology, 2008, 204, 83-105.	2.1	100
45	Origin and evolution of the Steamboat Springs siliceous sinter deposit, Nevada, U.S.A Sedimentary Geology, 2008, 210, 111-131.	2.1	57
46	Two new species of <i>Retiskenea</i> ? (Gastropoda: Neomphalidae) from Lower Cretaceous hydrocarbon-seep carbonates of northern California. Journal of Paleontology, 2008, 82, 140-153.	0.8	23
47	Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae. Astrobiology, 2008, 8, 747-770.	3.0	69
48	Jurassic and Cretaceous Gastropods from Hydrocarbon Seeps in Forearc Basin and Accretionary Prism Settings, California. Acta Palaeontologica Polonica, 2008, 53, 679-703.	0.4	49
49	Tracking crystallinity in siliceous hot-spring deposits. Numerische Mathematik, 2007, 307, 612-641.	1.4	80
50	Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps, Cascadia accretionary margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246, 260-277.	2.3	42
51	A LATE DEVONIAN HYDROCARBON-SEEP DEPOSIT DOMINATED BY DIMERELLOID BRACHIOPODS, MOROCCO. Palaios, 2007, 22, 114-122.	1.3	77
52	Defining biominerals and organominerals: Direct and indirect indicators of life. Sedimentary Geology, 2007, 201, 157-179.	2.1	150
53	Plant Traces ResemblingSkolithos. Ichnos, 2006, 13, 205-216.	0.5	26
54	Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232, 362-407.	2.3	470

#	Article	IF	CITATIONS
55	Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Organic Geochemistry, 2006, 37, 1289-1302.	1.8	98
56	Signatures of storms, oceanic floods and forearc tectonism in marine shelf strata of the Quinault Formation (Pliocene), Washington, USA. Sedimentology, 2006, 53, 945-969.	3.1	26
57	The Paleoenvironmental Significance of Psilonichnus. Palaios, 2006, 21, 187-196.	1.3	43
58	Acceleration of sinter diagenesis in an active fumarole, Taupo volcanic zone, New Zealand. Geology, 2006, 34, 749.	4.4	43
59	Abiotic-biotic controls on the origin and development of spicular sinter: in situ growth experiments, Champagne Pool, Waiotapu, New Zealand. Geobiology, 2005, 3, 93-114.	2.4	66
60	Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A Sedimentary Geology, 2005, 179, 249-278.	2.1	128
61	Lithomphalus enderlini gen. et sp. nov. from cold-seep carbonates in California—a Cretaceous neomphalid gastropod?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 232-241.	2.3	16
62	Exceptional crinoid occurrences and associated carbonates of the Keasey Formation (Early) Tj ETQq0 0 0 rgBT /C 210-231.	Dverlock 1 2.3	0 Tf 50 467 To 8
63	Morphologic and Mineralogic Transitions From Opal-A to Opal-CT in Low-Temperature Siliceous Sinter Diagenesis, Taupo Volcanic Zone, New Zealand. Journal of Sedimentary Research, 2004, 74, 561-579.	1.6	93
64	Diagenetic transformations (opal-A to quartz) of low- and mid-temperature microbial textures in siliceous hot-spring deposits, Taupo Volcanic Zone, New Zealand. Canadian Journal of Earth Sciences, 2003, 40, 1679-1696.	1.3	81
65	A â€~Phoebichnus look-alike': a fossilised root system from Quaternary coastal dune sediments, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 192, 247-258.	2.3	8
66	Late Pleistocene siliceous sinter associated with fluvial, lacustrine, volcaniclastic and landslide deposits at Tahunaatara, Taupo Volcanic Zone, New Zealand. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2003, 94, 485-501.	0.7	36
67	A NEW PSILONICHNUS ICHNOSPECIES ATTRIBUTED TO MUD–SHRIMP UPOGEBIA IN ESTUARINE SETTINGS. Journal of Paleontology, 2002, 76, 892.	0.8	14
68	The mineralogy, texture and significance of silica derived from alteration by steam condensate in three New Zealand geothermal fields. Clay Minerals, 2002, 37, 299-322.	0.6	53
69	A new Psilonichnus ichnospecies attributed to mud-shrimp Upogebia in estuarine settings. Journal of Paleontology, 2002, 76, 892-901.	0.8	24
70	Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today? Comment. International Journal of Earth Sciences, 2002, 91, 149-153.	1.8	20
71	Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids, 2002, 2, 63-94.	0.7	259
72	An unusual modern silica-carbonate sinter from Pavlova spring, Ngatamariki, New Zealand. Sedimentology, 2002, 49, 835-854.	3.1	48

#	Article	IF	CITATIONS
73	Trace metal chemistry and silicification of microorganisms in geothermal sinter, Taupo Volcanic Zone, New Zealand. Geothermics, 2001, 30, 483-502.	3.4	59
74	<i>Peregrinella</i> : an Early Cretaceous cold-seep-restricted brachiopod. Paleobiology, 1995, 21, 461-478.	2.0	68
75	Palaeoecological models, non-uniformitarianism, and tracking the changing ecology of the past. Geological Society Special Publication, 1995, 83, 7-26.	1.3	21
76	Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments. Geology, 1995, 23, 321.	4.4	121
77	New rhynchonellid brachiopod genus from Tithonian (Upper Jurassic) cold seep deposits of California and its paleoenvironmental setting. Journal of Paleontology, 1994, 68, 1243-1252.	0.8	40
78	Recognition of a Mio-Pliocene Cold Seep Setting from the Northeast Pacific Convergent Margin, Washington, U.S.A Palaios, 1992, 7, 422.	1.3	56