List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4700944/publications.pdf Version: 2024-02-01

DEAN ROADY

#	Article	IF	CITATIONS
1	The Application of Biocatalysis in the Preparation and Resolution of Moritaâ€Baylisâ€Hillman Adducts and Their Derivatives. ChemBioChem, 2022, 23, .	2.6	5
2	Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. ChemSusChem, 2022, 15, .	6.8	63
3	New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chemical Society Reviews, 2021, 50, 5850-5862.	38.1	168
4	Streamlining Design, Engineering, and Applications of Enzymes for Sustainable Biocatalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 8032-8052.	6.7	60
5	Development of fructose-1,6-bisphosphate aldolase enzyme peptide mimics as biocatalysts in direct asymmetric aldol reactions. RSC Advances, 2021, 11, 36670-36681.	3.6	2
6	Identification and characterisation of a fluorinase from Actinopolyspora mzabensis. Protein Expression and Purification, 2020, 166, 105508.	1.3	17
7	The complete genome sequence of the nitrile biocatalyst Rhodococcus rhodochrous ATCC BAA-870. BMC Genomics, 2020, 21, 3.	2.8	7
8	Biodiesel's trash is a biorefineries' treasure: the use of "dirty―glycerol as an industrial fermentation substrate. World Journal of Microbiology and Biotechnology, 2020, 36, 2.	3.6	24
9	Functional Expression and Characterization of a Panel of Cobalt and Iron-Dependent Nitrile Hydratases. Molecules, 2020, 25, 2521.	3.8	3
10	Efficient one-pot synthesis of functionalised imidazo[1,2- <i>a</i>]pyridines and unexpected synthesis of novel tetracyclic derivatives by nucleophilic aromatic substitution. RSC Advances, 2020, 10, 8104-8114.	3.6	6
11	The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chemical Science, 2020, 11, 2587-2605.	7.4	188
12	Substrate Profiling of the Cobalt Nitrile Hydratase from Rhodococcus rhodochrous ATCC BAA 870. Molecules, 2020, 25, 238.	3.8	13
13	Bacterial nitrilases and their regulation. Applied Microbiology and Biotechnology, 2019, 103, 4679-4692.	3.6	14
14	Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. ChemSusChem, 2019, 12, 2859-2881.	6.8	228
15	A green, economical synthesis of β-ketonitriles and trifunctionalized building blocks from esters and lactones. Beilstein Journal of Organic Chemistry, 2019, 15, 2930-2935.	2.2	1
16	Production of self-immobilised enzyme microspheres using microfluidics. Process Biochemistry, 2018, 69, 75-81.	3.7	8
17	A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Advances, 2018, 8, 39496-39510.	3.6	29
18	<i>Streptomyces albulus</i> yields ε-poly- <scp>l</scp> -lysine and other products from salt-contaminated glycerol waste. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 1083-1090.	3.0	18

#	Article	IF	CITATIONS
19	Dimethylformamide is a novel nitrilase inducer in Rhodococcus rhodochrous. Applied Microbiology and Biotechnology, 2018, 102, 10055-10065.	3.6	15
20	The limits to biocatalysis: pushing the envelope. Chemical Communications, 2018, 54, 6088-6104.	4.1	193
21	PADAM reactions of \hat{I}_{\pm} -aminoaldehydes: Identity of major and minor diastereomers from the Passerini reaction. Tetrahedron, 2018, 74, 2925-2941.	1.9	6
22	Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (<i>Trinervitermes trinervoides</i>) and the characterization of a multimodular βâ€1,4â€xylanase (GH11). Biotechnology and Applied Biochemistry, 2017, 64, 174-186.	3.1	22
23	A one-pot laccase-catalysed synthesis of coumestan derivatives and their anticancer activity. Bioorganic and Medicinal Chemistry, 2017, 25, 1172-1182.	3.0	23
24	Hydrolysis of nitriles by soil bacteria: variation with soil origin. Journal of Applied Microbiology, 2017, 122, 686-697.	3.1	8
25	Enzymatic kinetic resolution of Morita-Baylis-Hillman acetates. Tetrahedron: Asymmetry, 2017, 28, 1169-1174.	1.8	5
26	Tools for metabolic engineering in <i>Streptomyces</i> . Bioengineered, 2014, 5, 293-299.	3.2	14
27	Metagenomic mining of feruloyl esterases from termite enteric flora. Applied Microbiology and Biotechnology, 2014, 98, 727-737.	3.6	31
28	Characterisation of Two Bifunctional Cellulase–Xylanase Enzymes Isolated from a Bovine Rumen Metagenome Library. Current Microbiology, 2013, 66, 145-151.	2.2	44
29	Oneâ€Pot Laccaseâ€Catalysed Synthesis of 5,6â€Dihydroxylated Benzo[<i>b</i>]furans and Catechol Derivatives, and Their Anticancer Activity. Archiv Der Pharmazie, 2013, 346, 266-277.	4.1	34
30	Modification of Alcalase SphereZymeâ,,¢ by entrapment in LentiKats [®] to impart improved particle stability. Biocatalysis and Biotransformation, 2013, 31, 71-78.	2.0	5
31	Accessing Carboxylesterase Diversity from Termite Hindgut Symbionts through Metagenomics. Journal of Molecular Microbiology and Biotechnology, 2012, 22, 277-286.	1.0	6
32	Biocatalytic conversion of aloeresin A to aloesin. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1091-1097.	3.0	3
33	Biocatalytic enantiomeric resolution of l-menthol from an eight isomeric menthol mixture through transesterification. Journal of Molecular Catalysis B: Enzymatic, 2012, 75, 1-10.	1.8	23
34	Enantioselective biocatalytic hydrolysis of β-aminonitriles to β-amino-amides using Rhodococcus rhodochrous ATCC BAA-870. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 68-74.	1.8	25
35	A feruloyl esterase derived from a leachate metagenome library. BMB Reports, 2012, 45, 14-19.	2.4	10
36	An Integrated Chemo-enzymatic Route for Preparation of Î ² -Thymidine, a Key Intermediate in the Preparation of Antiretrovirals. Organic Process Research and Development, 2011, 15, 258-265.	2.7	6

#	Article	IF	CITATIONS
37	Scale-Up of a Chemo-Biocatalytic Route to (2 <i>R</i> ,4 <i>R</i>)- and (2 <i>S</i> ,4 <i>S</i>)-Monatin. Organic Process Research and Development, 2011, 15, 249-257.	2.7	16
38	Stabilization of Escherichia coli uridine phosphorylase by evolution and immobilization. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 279-285.	1.8	24
39	Defining a process operating window for the synthesis of 5-methyluridine by transglycosylation of guanosine and thymine. Journal of Biotechnology, 2011, 151, 108-113.	3.8	14
40	Cloning, purification and characterisation of a recombinant purine nucleoside phosphorylase from Bacillus halodurans Alk36. Extremophiles, 2010, 14, 185-192.	2.3	19
41	Diamination by N-coupling using a commercial laccase. Bioorganic and Medicinal Chemistry, 2010, 18, 1406-1414.	3.0	38
42	High-yielding cascade enzymatic synthesis of 5-methyluridine using a novel combination of nucleoside phosphorylases. Biocatalysis and Biotransformation, 2010, 28, 245-253.	2.0	10
43	Enantioselective hydrolysis of β-hydroxy nitriles using the whole cell biocatalyst Rhodococcus rhodochrous ATCC BAA-870. Journal of Molecular Catalysis B: Enzymatic, 2009, 59, 231-236.	1.8	27
44	Advances in enzyme immobilisation. Biotechnology Letters, 2009, 31, 1639-1650.	2.2	712
45	A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous β-lactamase activity on nitrocefin. Applied Microbiology and Biotechnology, 2009, 83, 491-500.	3.6	80
46	Microbial nitrilases: versatile, spiral forming, industrial enzymes. Journal of Applied Microbiology, 2009, 106, 703-727.	3.1	131
47	Discovery of a novel carboxylesterase through functional screening of a pre-enriched environmental library. Journal of Applied Microbiology, 2009, 106, 1532-1539.	3.1	14
48	Improved chemical and physical stability of laccase after spherezyme immobilisation. Enzyme and Microbial Technology, 2009, 45, 432-435.	3.2	26
49	Optimisation of stabilised Carboxylesterase NP for enantioselective hydrolysis of naproxen methyl ester. Process Biochemistry, 2008, 43, 1419-1426.	3.7	19
50	Spherezymes: A novel structured self-immobilisation enzyme technology. BMC Biotechnology, 2008, 8, 8.	3.3	36
51	Application of stereoselective biocatalysts for the enantiomeric resolution of beta-hydroxynitriles. Journal of Biotechnology, 2008, 136, S392.	3.8	1
52	A dual phase fermentation protocol for the production of hydantoinase and carbamoylase by the wild type Pseudomonas putida RU-KM3. Enzyme and Microbial Technology, 2007, 41, 539-545.	3.2	2
53	Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Applied Microbiology and Biotechnology, 2004, 64, 76-85.	3.6	116
54	Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR. Enzyme and Microbial Technology, 2004, 34, 283-291.	3.2	28

#	Article	IF	CITATIONS
55	Screening of commercial enzymes for the enantioselective hydrolysis of R,S-naproxen ester. Enzyme and Microbial Technology, 2003, 32, 472-477.	3.2	30
56	Cation loss during accumulation of heavy metal cations by Saccharomyces cerevisiae. Biotechnology Letters, 1994, 16, 543-548.	2.2	36
57	Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls ofSaccharomyces cerevisiae. Biotechnology and Bioengineering, 1994, 44, 297-302.	3.3	119
58	The use of hollow fiber cross-flow microfiltration in bioaccumulation and continuous removal of heavy metals from solution by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 1994, 44, 1362-1366.	3.3	35
59	Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme and Microbial Technology, 1994, 16, 633-638.	3.2	69
60	Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1994, 41, 149-154.	3.6	251
61	Copper tolerance in Saccharomyces cerevisiae. Letters in Applied Microbiology, 1994, 18, 245-250.	2.2	28

62 Biosorptton of heavy metal cations by nonâ€viable yeast biomass. Environmental Technology (United) Tj ETQq0 0 0 rgBT /Overlock 10 T

63Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1994, 41, 149-154.3.624	
--	--