List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4700839/publications.pdf Version: 2024-02-01

LINC FENC

#	Article	IF	CITATIONS
1	Photoreduction of Graphene Oxides: Methods, Properties, and Applications. Advanced Optical Materials, 2014, 2, 10-28.	3.6	235
2	Moistureâ€Responsive Graphene Paper Prepared by Selfâ€Controlled Photoreduction. Advanced Materials, 2015, 27, 332-338.	11.1	214
3	Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nature Communications, 2016, 7, 11573.	5.8	182
4	White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer. Applied Physics Letters, 2001, 78, 3947-3949.	1.5	165
5	Functional organic single crystals for solid-state laser applications. Laser and Photonics Reviews, 2014, 8, 687-715.	4.4	160
6	Ultrathin Metal Films as the Transparent Electrode in ITOâ€Free Organic Optoelectronic Devices. Advanced Optical Materials, 2019, 7, 1800778.	3.6	133
7	Bioinspired Fabrication of Superhydrophobic Graphene Films by Twoâ€Beam Laser Interference. Advanced Functional Materials, 2014, 24, 4595-4602.	7.8	118
8	Wearable Superhydrophobic Elastomer Skin with Switchable Wettability. Advanced Functional Materials, 2018, 28, 1800625.	7.8	115
9	White organic light-emitting devices using a phosphorescent sensitizer. Applied Physics Letters, 2003, 82, 4224-4226.	1.5	110
10	Optical Tamm states enhanced broad-band absorption of organic solar cells. Applied Physics Letters, 2012, 101, .	1.5	106
11	Recent Developments in Flexible Organic Lightâ€Emitting Devices. Advanced Materials Technologies, 2019, 4, 1800371.	3.0	104
12	Wettability of graphene: from influencing factors and reversible conversions to potential applications. Nanoscale Horizons, 2019, 4, 339-364.	4.1	103
13	Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices. Organic Electronics, 2016, 31, 247-252.	1.4	101
14	Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling. Optics Letters, 2005, 30, 2302.	1.7	100
15	Perovskite quantum dots for light-emitting devices. Nanoscale, 2019, 11, 19119-19139.	2.8	97
16	Solving Efficiency–Stability Tradeoff in Topâ€Emitting Organic Lightâ€Emitting Devices by Employing Periodically Corrugated Metallic Cathode. Advanced Materials, 2012, 24, 1187-1191.	11.1	96
17	Two-Photon Pumped Amplified Spontaneous Emission from Cyano-Substituted Oligo(<i>p</i> -phenylenevinylene) Crystals with Aggregation-Induced Emission Enhancement. Journal of Physical Chemistry C, 2010, 114, 11958-11961.	1.5	92
18	Red electrophosphorescence devices based on rhenium complexes. Applied Physics Letters, 2003, 83, 365-367.	1.5	86

#	Article	IF	CITATIONS
19	Broadband Light Extraction from White Organic Lightâ€Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity. Advanced Materials, 2013, 25, 6969-6974.	11.1	85
20	Whisperingâ€gallery mode lasing from patterned molecular single•rystalline microcavity array. Laser and Photonics Reviews, 2013, 7, 281-288.	4.4	85
21	High-performance blue electroluminescent devices based on hydroxyphenyl-pyridine beryllium complex. Applied Physics Letters, 2001, 78, 2300-2302.	1.5	83
22	An alternating nanoscale (hydrophilic–hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. Journal of Materials Chemistry A, 2019, 7, 8405-8413.	5.2	82
23	Distributed Feedback Lasers Based on Thiophene/Phenylene Coâ€Oligomer Single Crystals. Advanced Functional Materials, 2012, 22, 33-38.	7.8	81
24	Stretchable Organometalâ€Halideâ€Perovskite Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1807516.	11.1	79
25	Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices. Nanoscale, 2016, 8, 10010-10015.	2.8	77
26	Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology. Light: Science and Applications, 2018, 7, 35.	7.7	77
27	White-electrophosphorescence devices based on rhenium complexes. Applied Physics Letters, 2003, 83, 4716-4718.	1.5	76
28	Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices. Applied Physics Letters, 2005, 87, 241109.	1.5	75
29	Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation. Organic Electronics, 2011, 12, 1927-1935.	1.4	74
30	Highly Efficient Three Primary Color Organic Singleâ€Crystal Lightâ€Emitting Devices with Balanced Carrier Injection and Transport. Advanced Functional Materials, 2017, 27, 1604659.	7.8	69
31	Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices. Applied Physics Letters, 2002, 81, 2935-2937.	1.5	66
32	Highly efficient electrophosphorescence devices based on rhenium complexes. Applied Physics Letters, 2004, 84, 148-150.	1.5	66
33	Laserâ€Mediated Programmable N Doping and Simultaneous Reduction of Graphene Oxides. Advanced Optical Materials, 2014, 2, 120-125.	3.6	64
34	Two-Dimensional Stretchable Organic Light-Emitting Devices with High Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 31166-31171.	4.0	60
35	Flexible and efficient ITO-free semitransparent perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 660-665.	3.0	57
36	Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure. Applied Physics Letters, 2012, 100, .	1.5	54

#	Article	IF	CITATIONS
37	Light manipulation in organic lightâ€emitting devices by integrating micro/nano patterns. Laser and Photonics Reviews, 2017, 11, 1600145.	4.4	54
38	Flexible and transparent supercapacitor based on ultrathin Au/graphene composite electrodes. Applied Surface Science, 2019, 467-468, 104-111.	3.1	54
39	Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode. Applied Physics Letters, 2012, 101, .	1.5	53
40	Clarification of the Molecular Doping Mechanism in Organic Singleâ€Crystalline Semiconductors and their Application in Colorâ€Tunable Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1801078.	11.1	53
41	Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles. Nanophotonics, 2020, 9, 3111-3133.	2.9	52
42	Improved efficiency of indium-tin-oxide-free flexible organic light-emitting devices. Organic Electronics, 2014, 15, 478-483.	1.4	47
43	Arbitrary Shape Designable Microscale Organic Light-Emitting Devices by Using Femtosecond Laser Reduced Graphene Oxide as a Patterned Electrode. ACS Photonics, 2014, 1, 690-695.	3.2	47
44	Enhanced hole injection in organic light-emitting devices by using Fe3O4 as an anodic buffer layer. Applied Physics Letters, 2009, 94, 223306.	1.5	46
45	Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices. Optica, 2015, 2, 579.	4.8	45
46	Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices. Optics Letters, 2011, 36, 3915.	1.7	44
47	Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays. Organic Electronics, 2020, 76, 105494.	1.4	42
48	Highâ€Colorâ€Rendering and Highâ€Efficiency White Organic Lightâ€Emitting Devices Based on Doubleâ€Doped Organic Single Crystals. Advanced Functional Materials, 2019, 29, 1807606.	7.8	42
49	Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. Solar Energy Materials and Solar Cells, 2017, 169, 8-12.	3.0	41
50	Organic Singleâ€Crystalline Semiconductors for Lightâ€Emitting Applications: Recent Advances and Developments. Laser and Photonics Reviews, 2019, 13, 1900009.	4.4	41
51	Matching Photocurrents of Subâ€cells in Doubleâ€unction Organic Solar Cells via Coupling Between Surface Plasmon Polaritons and Microcavity Modes. Advanced Optical Materials, 2013, 1, 809-813.	3.6	40
52	Graphene as a Transparent and Conductive Electrode for Organic Optoelectronic Devices. Advanced Electronic Materials, 2019, 5, 1900247.	2.6	40
53	Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles. Applied Physics Letters, 2014, 105, .	1.5	38
54	Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity. NPG Asia Materials, 2018, 10, e470-e470.	3.8	37

#	Article	IF	CITATIONS
55	Linked Weyl surfaces and Weyl arcs in photonic metamaterials. Science, 2021, 373, 572-576.	6.0	36
56	Surface Plasmon-Polariton Mediated Red Emission from Organic Light-Emitting Devices Based on Metallic Electrodes Integrated with Dual-Periodic Corrugation. Scientific Reports, 2014, 4, 7108.	1.6	35
57	Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons. Applied Physics Letters, 2007, 90, 081106.	1.5	34
58	Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices. Applied Physics Letters, 2008, 93, 051106.	1.5	34
59	Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells. Applied Physics Letters, 2013, 102, .	1.5	33
60	Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based Light-Emitting Devices. Scientific Reports, 2015, 5, 12445.	1.6	33
61	Gold nanorods-silica Janus nanoparticles for theranostics. Applied Physics Letters, 2015, 106, .	1.5	33
62	Improved efficiency of indium-tin-oxide-free organic light-emitting devices using PEDOT:PSS/graphene oxide composite anode. Organic Electronics, 2015, 26, 81-85.	1.4	33
63	Highly efficient and mechanically robust stretchable polymer solar cells with random buckling. Organic Electronics, 2017, 43, 77-81.	1.4	32
64	Nanostructures induced light harvesting enhancement in organic photovoltaics. Nanophotonics, 2017, 7, 371-391.	2.9	32
65	Semitransparent and flexible perovskite solar cell with high visible transmittance based on ultrathin metallic electrodes. Optics Letters, 2017, 42, 1958.	1.7	32
66	Fabrication and Characterization of Organic Single Crystalâ€Based Lightâ€Emitting Devices with Improved Contact Between the Metallic Electrodes and Crystal. Advanced Functional Materials, 2014, 24, 7085-7092.	7.8	31
67	Infrared Absorption of Femtosecond Laser Textured Silicon Under Vacuum. IEEE Photonics Technology Letters, 2015, 27, 1481-1484.	1.3	31
68	Omnidirectional emission from top-emitting organic light-emitting devices with microstructured cavity. Optics Letters, 2012, 37, 124.	1.7	30
69	Highly flexible and efficient top-emitting organic light-emitting devices with ultrasmooth Ag anode. Optics Letters, 2012, 37, 1796.	1.7	29
70	Surface and Interface Engineering of Graphene Oxide Films by Controllable Photoreduction. Chemical Record, 2016, 16, 1244-1255.	2.9	29
71	Enhanced Efficiency and Mechanical Robustness of Flexible Perovskite Solar Cells by Using HPbl ₃ Additive. Solar Rrl, 2021, 5, 2000821.	3.1	29
72	Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance. Optics Letters, 2013, 38, 4382.	1.7	28

#	Article	IF	CITATIONS
73	As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance. Scientific Reports, 2016, 6, 37190.	1.6	28
74	Regulated Crystallization of FASnI ₃ Films through Seeded Growth Process for Efficient Tin Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41454-41463.	4.0	28
75	Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. Journal of Materials Chemistry A, 2020, 8, 7309-7316.	5.2	28
76	Magnetic Nanofilm of Fe ₃ O ₄ for Highly Efficient Organic Light-Emitting Devices. Journal of Physical Chemistry C, 2010, 114, 6718-6721.	1.5	27
77	Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells. Organic Electronics, 2015, 27, 167-172.	1.4	27
78	A two-step thermal annealing and HNO3 doping treatment for graphene electrode and its application in small-molecule organic solar cells. Organic Electronics, 2016, 38, 35-41.	1.4	27
79	Polarization dependent two-photon properties in an organic crystal. Applied Physics Letters, 2010, 97, .	1.5	26
80	Vortical Reflection and Spiraling Fermi Arcs with Weyl Metamaterials. Physical Review Letters, 2020, 125, 093904.	2.9	26
81	Fabrication and characterization of Ag film with sub-nanometer surface roughness as a flexible cathode for inverted top-emitting organic light-emitting devices. Nanoscale, 2013, 5, 10811.	2.8	25
82	Black Silicon IR Photodiode Supersaturated With Nitrogen by Femtosecond Laser Irradiation. IEEE Sensors Journal, 2018, 18, 3595-3601.	2.4	25
83	Tuning of chromaticity in organic multiple-quantum well white light emitting devices. Synthetic Metals, 2000, 108, 81-84.	2.1	24
84	Flexible lasers based on the microstructured single-crystalline ultrathin films. Journal of Materials Chemistry, 2012, 22, 24139.	6.7	24
85	Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry–Pérot cavity modes. Organic Electronics, 2013, 14, 1577-1585.	1.4	23
86	Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes. Opto-Electronic Advances, 2021, 4, 200024-200024.	6.4	23
87	Electrical and optical characteristics of red organic light-emitting diodes doped with two guest dyes. Synthetic Metals, 2003, 139, 341-346.	2.1	22
88	Enhanced efficiency of organic light-emitting devices with corrugated nanostructures based on soft nano-imprinting lithography. Applied Physics Letters, 2016, 109, .	1.5	22
89	Wellâ€Balanced Ambipolar Organic Single Crystals toward Highly Efficient Lightâ€Emitting Devices. Advanced Functional Materials, 2020, 30, 2002422.	7.8	22
90	Simultaneous efficiency enhancement and self-cleaning effect of white organic light-emitting devices by flexible antireflective films. Optics Letters, 2011, 36, 2635.	1.7	21

#	Article	IF	CITATIONS
91	Amplified spontaneous emission in the cyano-substituted oligo(p-phenylenevinylene) organic crystals: Effect of excitation wavelength. Applied Physics Letters, 2010, 96, .	1.5	20
92	Preparation and time-resolved fluorescence study of RGB organic crystals. Organic Electronics, 2013, 14, 389-395.	1.4	20
93	Highly Stable On-Chip Embedded Organic Whispering Gallery Mode Lasers. Journal of Lightwave Technology, 2014, 32, 2415-2419.	2.7	20
94	Microscaleâ€Patterned Graphene Electrodes for Organic Lightâ€Emitting Devices by a Simple Patterning Strategy. Advanced Optical Materials, 2018, 6, 1701348.	3.6	20
95	Rollerâ€Assisted Adhesion Imprinting for Highâ€Throughput Manufacturing of Wearable and Stretchable Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2020, 8, 1901525.	3.6	20
96	Highly Flexible Fabricâ€Based Organic Lightâ€Emitting Devices for Conformal Wearable Displays. Advanced Materials Technologies, 2020, 5, 1900942.	3.0	20
97	Highly flexible inverted organic solar cells with improved performance by using an ultrasmooth Ag cathode. Applied Physics Letters, 2012, 101, 133303.	1.5	19
98	Self-propelled micromotors based on Au–mesoporous silica nanorods. Nanoscale, 2015, 7, 11951-11955.	2.8	19
99	Fabrication of Black Silicon With Thermostable Infrared Absorption by Femtosecond Laser. IEEE Photonics Journal, 2016, 8, 1-9.	1.0	19
100	Reducing Photovoltage Loss in Inverted Perovskite Solar Cells by Quantum Dots Alloying Modification at Cathode Contact. Solar Rrl, 2020, 4, 1900468.	3.1	19
101	Polymer encapsulation of flexible top-emitting organic light-emitting devices with improved light extraction by integrating a microstructure. Organic Electronics, 2014, 15, 2661-2666.	1.4	18
102	Negative differential resistance and hysteresis in graphene-based organic light-emitting devices. Journal of Materials Chemistry C, 2018, 6, 1926-1932.	2.7	18
103	Recent progress in post treatment of silver nanowire electrodes for optoelectronic device applications. Nanoscale, 2021, 13, 12423-12437.	2.8	18
104	Preparation of a Fe ₃ O ₄ –Au–GO nanocomposite for simultaneous treatment of oil/water separation and dye decomposition. Nanoscale, 2016, 8, 17451-17457.	2.8	17
105	Role of \${m Fe}_{3}{m O}_{4}\$ as a \$p\$-Dopant in Improving the Hole Injection and Transport of Organic Light-Emitting Devices. IEEE Journal of Quantum Electronics, 2011, 47, 591-596.	1.0	16
106	Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length. Organic Electronics, 2013, 14, 1597-1601.	1.4	16
107	Momentum space toroidal moment in a photonic metamaterial. Nature Communications, 2021, 12, 1784.	5.8	16
108	Surface plasmon-enhanced amplified spontaneous emission from organic single crystals by integrating graphene/copper nanoparticle hybrid nanostructures. Nanoscale, 2017, 9, 19353-19359.	2.8	15

#	Article	IF	CITATIONS
109	Sub-bandgap photo-response of non-doped black-silicon fabricated by nanosecond laser irradiation. Optics Letters, 2018, 43, 1710.	1.7	15
110	Solar-energy camouflage coating with varying sheet resistance. Nano Energy, 2020, 77, 105095.	8.2	15
111	Electroluminescence of Hole Block Material Caused by Electron Accumulation and Hole Penetration. Journal of Physical Chemistry C, 2008, 112, 15065-15070.	1.5	14
112	Efficient top-emitting organic light-emitting devices using Fe3O4 modified Ag anode. Organic Electronics, 2010, 11, 1891-1895.	1.4	14
113	Temporal dynamics of two-photon-pumped amplified spontaneous emission in slab organic crystals. Optics Letters, 2010, 35, 2561.	1.7	14
114	Efficiency Enhancement in Organic Light-Emitting Devices With a Magnetic Doped Hole-Transport Layer. IEEE Photonics Journal, 2011, 3, 26-30.	1.0	14
115	Stability Improved Stretchable Metallic Gratings With Tunable Grating Period in Submicron Scale. Journal of Lightwave Technology, 2015, 33, 3327-3331.	2.7	14
116	Luminescence Change from Orange to Blue for Zeroâ€Dimensional Cs ₂ InCl ₅ (H ₂ 0) Metal Halides in Water and a New Postâ€doping Method. Chemistry - an Asian Journal, 2021, 16, 1619-1625.	1.7	14
117	Improved hole injection and transport of organic light-emitting devices with an efficient p-doped hole-injection layer. Applied Physics Letters, 2009, 95, 263303.	1.5	13
118	Direct laser interference ablating nanostructures on organic crystals. Optics Letters, 2012, 37, 686.	1.7	13
119	Distributed feedback lasing from thin organic crystal based on active waveguide grating structures. Organic Electronics, 2012, 13, 1602-1605.	1.4	13
120	Organic Crystals: Fabrication and Characterization of Organic Single Crystalâ€Based Lightâ€Emitting Devices with Improved Contact Between the Metallic Electrodes and Crystal (Adv. Funct. Mater.) Tj ETQq0 0 0 rg	;BT7 /® verlo	och130 Tf 50 2
121	Highly polarized emission from organic single-crystal light-emitting devices with a polarization ratio of 176. Optica, 2022, 9, 121.	4.8	13
122	Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method. Science Bulletin, 2022, 67, 794-802.	4.3	13
123	Two-Photon Absorption and Spectral-Narrowed Light Source. IEEE Journal of Quantum Electronics, 2010, 46, 1775-1781.	1.0	12
124	Flexible Efficient Top-Emitting Organic Light-Emitting Devices on a Silk Substrate. IEEE Photonics Journal, 2017, 9, 1-6.	1.0	12
125	Ultrathin Au Electrodes Based on a Hybrid Nucleation Layer for Flexible Organic Light-Emitting Devices. IEEE Nanotechnology Magazine, 2018, 17, 1077-1081.	1.1	12
126	Highly flexible organic–inorganic hybrid perovskite light-emitting devices based on an ultrathin Au electrode. Optics Letters, 2018, 43, 5524.	1.7	12

#	Article	IF	CITATIONS
127	Improved electron injection and efficiency in blue organic light-emitting diodes using coupled electric field near cathode. Organic Electronics, 2018, 53, 346-352.	1.4	11
128	Thermally-induced wrinkles on PH1000/graphene composite electrode for enhanced efficiency of organic solar cells. Solar Energy Materials and Solar Cells, 2019, 201, 110075.	3.0	11
129	Spontaneously formed random corrugations for efficient light extraction enhancement in flexible organic light-emitting devices. Organic Electronics, 2019, 65, 91-95.	1.4	11
130	Doping in the Mixed Layer to Achieve High Brightness and Efficiency Organic Light Emitting Devices. Chinese Physics Letters, 2002, 19, 1362-1364.	1.3	10
131	Strongly Localized Evanescent Optical Tamm States at Metal-DBR Interface. Journal of Lightwave Technology, 2013, 31, 1654-1659.	2.7	10
132	Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer. Applied Physics Letters, 2015, 106, .	1.5	10
133	Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells. Applied Physics Letters, 2017, 111, .	1.5	10
134	PFSA-passivated silver nanowire transparent electrodes for highly flexible organic-light-emitting devices with improved stability. Organic Electronics, 2020, 84, 105727.	1.4	10
135	Low threshold melt-processed two-photon organic surface emitting upconversion lasers. Organic Electronics, 2013, 14, 762-767.	1.4	9
136	Plasmonic ultrathin metal grid electrode induced optical outcoupling enhancement in flexible organic light-emitting device. Organic Electronics, 2020, 87, 105960.	1.4	9
137	Electron injection and electroluminescence investigation of organic light-emitting devices based on a Sn/Al cathode. Synthetic Metals, 2002, 126, 347-350.	2.1	8
138	One-pot preparation of novel asymmetric structure nanoparticles and its application in catalysis. RSC Advances, 2014, 4, 43586-43589.	1.7	8
139	Surface Passivation of Perovskite Film by Small Molecule Infiltration for Improved Efficiency of Perovskite Solar Cells. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	8
140	Sulfur-Doped Silicon Photodiode by Ion Implantation and Femtosecond Laser Annealing. IEEE Sensors Journal, 2017, 17, 2367-2371.	2.4	8
141	Directly Imprinted Periodic Corrugation on Ultrathin Metallic Electrode for Enhanced Light Extraction in Organic Light-Emitting Devices. IEEE Nanotechnology Magazine, 2019, 18, 1057-1062.	1.1	8
142	Improved light extraction in all-inorganic perovskite light-emitting devices with periodic nanostructures by nanoimprinting lithography. Optics Letters, 2020, 45, 5156.	1.7	8
143	Highly transparent and conductive metal oxide/metal/polymer composite electrodes for high-efficiency flexible organic light-emitting devices. Nanophotonics, 2020, 9, 3567-3573.	2.9	8
144	Controllable molecular doping in organic single crystals toward high-efficiency light-emitting devices. Organic Electronics, 2021, 91, 106089.	1.4	7

#	Article	IF	CITATIONS
145	Improved Performance of ITO-Free Organic Solar Cells Using a Low-Workfunction and Periodically Corrugated Metallic Cathode. IEEE Photonics Journal, 2012, 4, 1737-1743.	1.0	6
146	Enhanced efficiency of organic light-emitting devices by using a directly imprinted nanopillared ultrathin metallic electrode. Optics Letters, 2020, 45, 4879.	1.7	6
147	Enhanced efficiency of all-inorganic perovskite light-emitting diodes by using F4-TCNQ-doped PTAA as a hole-transport layer. Optics Letters, 2019, 44, 4817.	1.7	6
148	Enhanced Electron Injection Efficiency and Electroluminescence in Organic Light-Emitting Diodes by Using an Sn/Al Cathode. Chinese Physics Letters, 2002, 19, 1534-1536.	1.3	5
149	Highly Flexible and Mechanically Robust Ultrathin Au Grid as Electrodes for Flexible Organic Light-Emitting Devices. IEEE Nanotechnology Magazine, 2019, 18, 776-780.	1.1	5
150	Capillary Force-Induced Printing of Stretchable and Mechanically Stable Silver Nanowire Electrodes With Highly Ordered Alignment For Ultra-Flexible Organic Light-Emitting Devices. IEEE Nanotechnology Magazine, 2021, 20, 99-103.	1.1	5
151	Stretchable Organic Lightâ€Emitting Devices with Invisible Orderly Wrinkles by using a Transferâ€Free Technique. Advanced Materials Technologies, 2022, 7, .	3.0	5
152	Thickness dependent emission color of organic white light-emitting devices. Synthetic Metals, 2003, 137, 1101-1102.	2.1	4
153	Degradation of organic light-emitting devices under different driving model. Synthetic Metals, 2003, 137, 1103-1104.	2.1	4
154	Effect of Multiple-Quantum-Well Structure on Efficiency of Organic Electrophosphorescent Light-Emitting Devices. Japanese Journal of Applied Physics, 2003, 42, L376-L378.	0.8	4
155	Improved color purity and electroluminescent efficiency obtained by modulating thicknesses and evaporation rates of hole block and electron transport layers. Applied Surface Science, 2011, 257, 3033-3038.	3.1	4
156	Top down fabrication of organic nanocrystals by femtosecond laser induced transfer method. CrystEngComm, 2012, 14, 4596.	1.3	4
157	Nanoimprinted structures for organic light-emitting devices and lasers. Chinese Journal of Liquid Crystals and Displays, 2021, 36, 8-20.	0.2	4
158	Transparent ultrathin Ag nanomesh electrode fabricated by nanosphere lithography for organic light-emitting devices. Applied Physics Letters, 2022, 120, 051106.	1.5	4
159	Doping in mixed layer can improve the performances of organic light-emitting devices. Synthetic Metals, 2003, 137, 1529-1530.	2.1	3
160	Improved Quantum Efficiency of Organic Light Emitting Diodes with Gradiently Doped Double Emitting Zone. Chinese Physics Letters, 2003, 20, 938-941.	1.3	3
161	Enhanced Red Emission from Fluorescent Organic Light-Emitting Devices Utilizing a Phosphorescent Sensitizer. Japanese Journal of Applied Physics, 2004, 43, 2320-2322.	0.8	3
162	Quantum Dot LEDs: Stretchable Organometalâ€Halideâ€Perovskite Quantumâ€Dot Lightâ€Emitting Diodes (A	dv.) Ti ETQ	q0

162

#	Article	IF	CITATIONS
163	[(UO 2)(C 10 H 8 N 2 O 2) 2][HPW 12 O 40]: The First Case of a Uranyl Coordination Network Containing a Kegginâ€Type Polyoxometalate. European Journal of Inorganic Chemistry, 2020, 2020, 4577-4580.	1.0	3
164	Enhanced Performance of Perovskite Light-Emitting Devices With Improved Perovskite Crystallization. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	2
165	Omnidirectional light absorption enhancement of perovskite solar cells by an antireflection film with holographic lithography microstructures. Optics Letters, 2021, 46, 4781.	1.7	2
166	Improved performance of pure red perovskite light-emitting devices based on CsPb(Br _{1-x} I _x) ₃ with variable content of iodine and bromine. Optics Letters, 2020, 45, 2724.	1.7	2
167	Organic Single Crystalline Lasers: Distributed Feedback Lasers Based on Thiophene/Phenylene Co-Oligomer Single Crystals (Adv. Funct. Mater. 1/2012). Advanced Functional Materials, 2012, 22, 32-32.	7.8	1
168	Eliminating Angular Dispersion in Microcavity by Employing Metamaterials With Hyperbolic Dispersion as Reflectors. IEEE Journal of Quantum Electronics, 2014, 50, 348-353.	1.0	1
169	Enhanced performance of white organic light-emitting devices based on ambipolar white organic single crystals. Applied Physics Letters, 2021, 118, .	1.5	1
170	Complete stress release in monolayer ALD-Al2O3 film based on mechanical equilibrium homeostasis to realize a bending radius of 1mm. Soft Matter, 0, , .	1.2	1
171	Graphene: Moisture-Responsive Graphene Paper Prepared by Self-Controlled Photoreduction (Adv.) Tj ETQq1 1	0.784314 11.1	rgBT /Overloc
172	Improved performance of organic optoelectronic devices by integrating periodic microstructures. , 2014, , .		0
173	Light Manipulation in Organic Optoelectronic Devices by Integrating Micro/Nano Patterns. , 2015, , .		0
174	Surface Plasmon Polariton-Enabled High-Performance Organic Optoelectronic Devices. , 2015, , 1-11.		0
175	Surface Plasmon Polariton-Enabled High-Performance Organic Optoelectronic Devices. , 2016, , 3956-3966.		0
176	Flexible and stretchable organic light-emitting devices: toward a wearable display. , 2019, , .		0
177	Color reduction–high-color-rendering white organic single crystal-based light-emitting devices. Chinese Science Bulletin, 2020, 65, 2422-2423.	0.4	0
178	Perovskite Quantum Dots Based Light-Emitting Diodes. Springer Series in Materials Science, 2020, , 107-138.	0.4	0
179	Recent developments on organic single crystal-based light-emitting devices. Chinese Science Bulletin, 2021, 66, 2845-2860.	0.4	0